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Abstract

Wireless sensor network has emerged as a key technology for various applications

such as environmental sensing, structural health monitoring, and area surveillance.

Energy is by far one of the most critical design hurdles that hinders the deploy-

ment of wireless sensor networks. The lifetime of traditional battery-powered sensor

networks is limited by the capacities of batteries. Even many energy conservation

schemes were proposed to address this constraint, the network lifetime is still in-

herently restrained, as the consumed energy cannot be replenished easily. Fully

addressing this issue requires energy to be replenished quite often in sensor net-

works (renewable sensor networks). One viable solution to energy shortages is enabling

each sensor to harvest renewable energy from its surroundings such as solar energy,

wind energy, and so on. In comparison with their conventional counterparts, the net-

work lifetime in renewable sensor networks is no longer a main issue, since sensors

can be recharged repeatedly. This results in a research focus shift from the network

lifetime maximization in traditional sensor networks to the network performance op-

timization (e.g., monitoring quality). This thesis focuses on these issues and tackles

important problems in renewable sensor networks as follows.

We first study the target coverage optimization in renewable sensor networks

via sensor duty cycle scheduling, where a renewable sensor network consisting of

a set of heterogeneous sensors and a stationary base station need to be scheduled

to monitor a set of targets in a monitoring area (e.g., some critical facilities) for a

specified period, by transmitting their sensing data to the base station through multi-

hop relays in a real-time manner. We formulate a coverage maximization problem

in a renewable sensor network which is to schedule sensor activities such that the

monitoring quality is maximized, subject to that the communication network induced

by the activated sensors and the base station at each time moment is connected. We

approach the problem for a given monitoring period by adopting a general strategy.

That is, we divide the entire monitoring period into equal numbers of time slots
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and perform sensor activation or inactivation scheduling in the beginning of each

time slot. As the problem is NP-hard, we devise efficient offline centralized and

distributed algorithms for it, provided that the amount of harvested energy of each

sensor for a given monitoring period can be predicted accurately. Otherwise, we

propose an online adaptive framework to handle energy prediction fluctuation for

this monitoring period. We conduct extensive experiments, and the experimental

results show that the proposed solutions are very promising.

We then investigate the data collection optimization in renewable sensor networks

by exploiting sink mobility, where a mobile sink travels around the sensing field to

collect data from sensors through one-hop transmission. With one-hop transmission,

each sensor could send data directly to the mobile sink without any relay, and thus no

energy are consumed on forwarding packets for others which is more energy efficient

in comparison with multi-hop relays. Moreover, one-hop transmission particularly is

very useful for a disconnected network, which may be due to the error-prone nature

of wireless communication or the physical limit (e.g., some sensors are physically

isolated), while multi-hop transmission is not applicable. In particular, we investigate

two different kinds of mobile sinks, and formulate optimization problems under

different scenarios, for which both centralized and distributed solutions are proposed

accordingly. We study the performance of the proposed solutions and validate their

effectiveness in improving the data quality.

Since the energy harvested often varies over time, we also consider the scenario of

renewable sensor networks by utilizing wireless energy transfer technology, where a

mobile charging vehicle periodically travels inside the sensing field and charges sen-

sors without any plugs or wires. Specifically, we propose a novel charging paradigm

and formulate an optimization problem with an objective of maximizing the number

of sensors charged per tour. We devise an offline approximation algorithm which

runs in quasi-polynomial time and develop efficient online sensor charging algo-

rithms, by considering the dynamic behaviors of sensors’ various sensing and trans-

mission activities. To study the efficiency of the proposed algorithms, we conduct

extensive experiments and the experimental results demonstrate that the proposed

algorithms are very efficient.



xi

We finally conclude our work and discuss potential research topics which derive

from the studies of this thesis.
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Chapter 1

Introduction

Wireless sensor network (WSN) has emerged as a key technology for many moni-

toring and surveillance applications. For example, sensor networks can be used to

monitor building integrity during earthquakes; sensor networks can be deployed for

habitat monitoring and environmental sensing; sensor networks can be applied to

monitor temperature or power usage of data centers; sensor networks can be used to

support control, communications, surveillance and targeting system functions; sen-

sor networks can be deployed to monitor patients and assist patients with disabilities;

sensor networks can be used to monitor the pesticides level in the drinking water,

and the level of soil erosion. Some other commercial applications include managing

inventory, monitoring product quality, and monitoring disaster areas [1].

However, the lack of easy access to a continuous power source and the limited

lifetime of batteries have hindered the wide-scale deployment of sensor networks.

Conventional WSNs are typically required to run for a long periods, often several

years, only powered by batteries. Finite battery capacity means that sensor nodes

operate for a finite duration, which implies limited lifetime of the WSN applications

or additional cost and complexity to regularly change batteries. Indeed, batteries

cannot easily be replaced and sometimes are very dangerous to replace, since typ-

ically there are hundreds to thousands of sensor nodes and sensor nodes may be

deployed in unreachable places (e.g., sensor networks used to monitor a nuclear dis-

aster site or volcanic eruption). To make matters worse, depleted batteries constitute

environmental problems. A viable solution to this problem is to allow sensor nodes

to harvest energy from their surroundings. In addition to being environmentally

friendly, harvesting energy could also enable sensor nodes to function indefinitely,

1



2 Introduction

allowing the network to operate perpetually and eliminating the cost for battery re-

placement.

The main sources of energy suitable for sensor networks can be broadly classified

into the following two categories, (i) Ambient Energy Sources: sources of energy from

the surrounding environment, e.g., solar energy, wind energy, and vibration energy;

and (ii) Human Power Sources: sources of energy harvested from body movements

of humans, e.g., blood pressure, body heat and breath [85]. Several implementations

of renewable sensor nodes exists, e.g., Prometheus, HydroWatch, Heliomote, Ambi-

max, and Sunflower, which have been discussed in [85]. Moreover, a few example

applications have been deployed and tested in the real environment. ZebraNet [115]

is a mobile sensor platform with sparse network coverage and high-energy GPS sen-

sors to track zebra movement. The ZebraNet node has a Li-ion rechargeable battery

for support at night and bad weather. TurtleNet [93] is similar to the ZebraNet and

extends on ZebraNet’s design for perpetual wildlife tracking. Trio testbed [25] is an

outdoor sensor network deployment that consists of 557 solar-powered motes, seven

gateway nodes and a root server. SHiMmer [72] is a wireless sensor platform for

structural health monitoring, in which the nodes is powered by solar energy and

uses super-capacitor as storage. RiverMote [32] is also a wireless sensor platform for

environmental monitoring and consists of low-power motes with energy harvesting

system.

Energy harvesting introduces a change to the fundamental principles based on

which protocols for wireless sensor networks are designed. Instead of focusing on

energy efficient protocols that aim to maximize network lifetime, the main design

objective in sensor networks with energy harvesting (renewable sensor networks) is

to maximize the performance of the network, given that energy is available to be

harvested from the surroundings. In other words, the surplus of harvested energy

can be used to improve the performance of the network. For example, a sensor node

can increase its sampling frequency or its duty-cycle to increase sensing reliability, or

increase transmission power to decrease length of routing paths.
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1.1 System Model of Renewable Sensor Networks

Figure 1.1: A renewable sensor network.

Similar to a conventional sensor network, a renewable sensor network consists

of hundreds/thousands of renewable sensor nodes. The positions of sensor nodes

need not be engineered or predetermined. This allows the random deployment in

inaccessible terrains or disaster relief operations. Figure 1.1 gives an example of a

renewable sensor network. The sensor nodes are usually scattered in a sensing field.

Each of these scattered sensor nodes has the capability to collect data and route data

back to the base station (sink). The sink may communicate with the monitoring center

via Internet or Satellite.

Figure 1.2: An illustration of renewable sensor node components.

Illustrated in Figure 1.2, renewable sensor nodes consist of sensing, data process-

ing, communicating and energy harvesting components, which are able to monitor

a wide variety of ambient conditions that include temperature, humidity, vehicular

movement, lightning condition, pressure, noise levels, and the current characteristics

such as speed, direction, and size of an object. Once the energy is collected by a sen-

sor node, it will be stored either in NiMH batteries, Lithium batteries, ultra-capacitor,
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or even directly supply this sensor node.

1.2 Challenges in Research of Renewable Sensor Networks

The harvested energy however depends heavily on environmental conditions, and its

time-varying, intermittent availability poses significant challenges in algorithm/pro-

tocol design for renewable sensor networks. For example, for sensor nodes with

energy harvesting abilities, conservative energy expenditures may lead to missed

recharging opportunities due to battery capacity limitations, while aggressive usage

of energy may cause battery outages that result in reduced coverage or connectivity

of the network for certain time periods. Further complications come about, since

the heterogeneous spatial harvesting capabilities across different nodes in a sensing

space. Take solar power for instance, the harvesting capabilities of different sensors

vary, due to under the shade or cloud coverage.

Particularly, the challenges lie in:

• The added dimension of harvested energy makes the energy management in re-

newable sensor networks substantially different from their conventional sensor

networks. Sensor node’s internal power system should be realistically mod-

elled (e.g., renewable energy replenishment and battery recharging/discharing

process) to provide reliable energy awareness;

• The harvested energy variations among sensor nodes require that their duty-

cycles must be carefully allocated, as biased allocations lead to poor represen-

tations of sensory data from low energy sensor nodes, thereby compromising

the monitoring quality. The capacity of self-management for each individual

node is required to ensure sustainable operation while optimizing its long-term

power usage;

• The intermittent connectivity between sensor nodes requires that data routing

protocols must be robust and intelligently adapted to the changes of network

topology. Distributed and adaptive algorithms and protocols should be de-

vised, that enable sensor nodes to change their activities intelligently to respond
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to the dynamic changes;

• The large scale deployment of renewable sensor networks requires that the

proposed algorithms and protocols must be scalable with the growth of the

network size. Moreover, there is no need to find an exact solution as finding an

exact solution usually takes a much longer time due to the uncertainty of the

convergence speed of the solution. Even if such a solution is found, it may no

longer be applicable, since the profiles of energy harvesting sources have been

dramatically changed during the solution finding period.

1.3 Research Topics in Renewable Sensor Networks

Essential to our vision is a focus on the design of algorithms/protocols for renewable

sensor networks that can optimize resource utilization and network performance.

Renewable sensor networks open the door to an unattended, uninterrupted, and

virtually unlimited information-gathering paradigm for a wide-range of applications,

such as field exploration, environmental monitoring, and security surveillance.

Figure 1.3: An overview.

As illustrated in Figure 1.3, to provide quality-aware service with a renewable

sensor network, several important constraints should be addressed such as sensing

coverage, data gathering, and energy management. To this end, this thesis specifi-

cally focuses on the following research topics:
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• Quality-aware target coverage in renewable sensor networks via sensor duty

cycle scheduling

• Quality-aware data collection in renewable sensor networks by exploring sink

mobility

• Quality-aware energy provisioning in renewable sensor networks by utilizing

wireless energy transfer

1.3.1 Quality-Aware Target Coverage in Renewable Sensor Networks via

Sensor Duty Cycle Scheduling

Coverage in wireless sensor networks is usually defined as a measure of how well

and how long the sensors are able to observe the physical space, which indicates the

monitoring quality provided by wireless sensor networks. For example, in an appli-

cation of forest monitoring, one may ask how well the network can observe a given

area and what the chances are that a fire starting in a specific location of forest will

be detected in a given time frame. Additionally, coverage formulations can try to

find weak points in a sensor field and suggest future deployment or reconfiguration

schemes for improving the coverage performance. In addition to coverage, it is im-

portant for a sensor network to maintain connectivity. Connectivity can be defined

as the ability of the sensor nodes to reach the sink. If there is no available route

from a sensor node to the data sink then the data collected by that node can not be

processed.

Sensing coverage in conventional sensor networks has been extensively stud-

ied in the past decade [14, 18, 58, 97]. Depending on the coverage objectives and

applications, they can be roughly classified into three categories: (1) area cover-

age [97], in which the objective is to cover (monitor) a region (the collection of all

space points within the sensor field), and each point of the region need to be mon-

itored (e.g., cover a forest); (2) target coverage [14, 58], in which the objective is to

cover a set of target points with known location that need to be monitored (e.g.,

cover a collection of precious renaissance paintings); (3) barrier coverage [18], in

which the objective is to minimize the probability of undetected penetration through
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the region, (e.g., detect the spread of lethal chemicals around a chemical factory).

Among these problems, most of the research focused on the network lifetime pro-

longation. To maximize the network lifetime, various strategies of sensor activity

scheduling have been proposed. Among them, the popular one is the adoption of

duty-cycles, that is, each sensor works either in one of two modes: active mode or

sleep mode [12, 24, 36, 37, 58, 60, 64, 99].

In comparison with conventional sensor networks, we focus on the target cover-

age problem in renewable sensor networks. Several studies on target coverage have

been conducted with the aim of optimizing the coverage performance [22, 76, 86, 110].

These mentioned studies however did not consider the connectivity of the commu-

nication network induced by the activated sensors and the base station. It is well

known that both sensing coverage and network connectivity are the fundamental

performance metrics in wireless sensor networks, where the coverage quantifies the

quality of monitoring while the network connectivity indicates the accessibility from

the base station to the sensory data. Unlike existing works, we study how to schedule

sensor nodes to maximize coverage for a given monitoring period by adopting a gen-

eral strategy. That is, we start by dividing the entire monitoring period into number

of equal time slots. We then perform sensor activation or inactivation scheduling in

the beginning of each time slot. The challenges to solve the problem are as follows:

(1) at which time slots, a sensor should be activated or deactivated, as the amount

of harvested energy (consumed energy) at a sensor depends on not only different

scheduling strategies but also the availabilities of time-varying energy harvesting

sources in the entire monitoring period? (2) how to make sure that all activated sen-

sors and the base station form a connected component at each time slot? (3) how

to devise an efficient sensor scheduling algorithm whose solution will maximize the

target coverage quality for the entire monitoring period?

1.3.2 Quality-Aware Data Collection in Renewable Sensor Networks by

Exploring Sink Mobility

Besides the active (via in-situ observation) or passive (via remote-sensing technolo-

gies) sensing on the interested real-word phenomena, the paramount task in a wire-
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less sensor network is data collection, which considers how to efficiently gather sens-

ing data from scattered sensor nodes.

Traditionally, data collection in sensor networks assumed that the network is

dense, the data produced by a sensor node is sent to a fixed sink via a short-range

multi-hop routing path. Although the data collection paradigm based on fixed sinks

may be applicable to small to medium size networks, it is definitely not suitable

for large-scale networks, due to limited communication bandwidth, etc. Meanwhile,

the multi-hop communication makes the sensor nodes near to the sink deplete their

energy much faster than the other nodes, which causes high unbalance of energy

consumption in the whole network and results in the premature termination of the

network lifetime.

To overcome the mentioned drawbacks, several approaches have been proposed

for efficient data collection. Based on the focus of the work, we can roughly divide

them into three categories. The first category is the enhanced relay routing [19,

80, 88], in which load balance, schedule pattern and data redundancy are jointly

considered. The second category introduces a hierarchical infrastructure to improve

the scalability [31, 40, 59], in which sensor nodes are organized into clusters and

cluster heads take the responsibility of forwarding data to the sink. Clustering can

be very effective in local data aggregation since it can dampen collisions and support

load balance among sensor nodes. The third category explores the sink mobility and

adopts mobile sinks [23, 69], in which one or more mobile sinks move around the

sensor nodes deployed over the area of interest. Once a mobile sink is within the

communication range of a sensor node, the data accumulated in the sensor node is

forwarded to the mobile sink. Clearly, such a mobile sink based strategy alleviates

the problem of the multi-hop communication scheme since no node needs to be

involved in energy-exhaustive multi-hop message forwarding. However, in enhanced

relay routing schemes, some critical sensor nodes on the path may still run out of

energy faster than others. In cluster-based schemes, cluster heads will inevitably

consume much more energy than other sensor nodes due to the handling of intra-

cluster aggregation and inter-cluster data forwarding. In contrast, using mobile sinks

can effectively alleviate the non-uniform energy consumption by confining packet
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relays, and take the burden of data routing away from sensors.

In the past few years, extensive studies on mobile data collection in conventional

sensor networks have been conducted and demonstrated that such mobile sink based

strategy can significantly improve various network performance including reducing

the energy consumption of sensors, balancing the workload among the sensors, and

prolonging the network lifetimes [9, 16, 23, 28, 29, 52, 56, 92, 107, 109]. In general,

existing studies can be classified into three categories in terms of sink mobility: sinks

with random mobility which are often mounted on human being or animals which

move randomly in the monitored area to collect data from sensors [41]; sinks with

controlled mobility which actively control their trajectories [35, 39]; sinks with de-

terministic mobility (path-constrained mobile sinks) which move along a pre-defined

path [16, 29, 45, 84]. Most existing studies focused on minimizing the energy con-

sumption so as to prolong the network lifetime since sensors are powered by energy-

limited batteries.

In contrast to conventional sensor networks, very little attention has been paid to

data collection in renewable sensor networks with mobile sinks. Most existing studies

on data collection in such networks are to adjust sensors’ duty-cycle or sampling rate

and forward data collected to one or more static sinks through multi-hop relays [26,

55, 61, 63], that is to throttle activity during times of limited energy and increase

activity when energy is readily available. Orthogonal to existing works, we consider

data collection in a renewable sensor network with a mobile sink. The time-varying

characteristics of energy renewable sources poses a great challenge in the design of

routing protocols for renewable sensor networks. That is, how to design a routing

protocol such that the volume or quality of the collected data is maximized, under

the dynamic energy replenishment constraint.

1.3.3 Quality-Aware Energy Provisioning in Renewable Sensor Networks

by Utilizing Wireless Energy Transfer

Considering that energy harvesting in renewable sensor networks is not stable and

often varies over time, the recent breakthrough in wireless energy transfer technology
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provides a promising alternative or supplementary solution to power sensors. Par-

ticularly, employing two strongly coupled magnetic resonant objects, Kurs et al. [49]

exploited the resonant magnetic technique to transfer energy from one storage device

to another without any plugs or wires. They empirically demonstrated that a wire-

less illumination of a 60 watts light bulb from 2 meters away achieved a 40% energy

transfer efficiency. What makes such wireless energy transfer technology particularly

attractive is that it does not require line-of-sight or any alignment (i.e., omnidirec-

tional). This promising technique will provide a controllable and perpetual energy

source to recharge sensors if needed.

Armed with the wireless energy transfer technology, several studies on employ-

ing mobile vehicles with high volume batteries as mobile chargers to recharge energy

for sensors have been conducted [4, 21, 27, 38, 51, 75, 83, 95, 101, 116, 118]. Most

of these studies considered sensor energy recharging and data flow routing jointly.

These joint consideration of energy replenishment and data flow routing in literature

may have limited applications, due to their unrealistic assumptions such as (1) the

energy consumption rate and/or data generation rate do not change over time; (2)

the flow conservation at each sensor node is maintained; and (3) reliable wireless

communications among the sensor nodes are always assumed. However, in reality

sensing data rates of sensors are usually closely related to specific applications of

the sensor network (e.g. event detection application). The flow conservation pre-

vents data aggregation at intermediate nodes while data aggregation at sensor nodes

can not only reduce data traffics but also bring node energy savings [48]. Also, it is

well-known that wireless communication is notoriously unreliable [117], and retrans-

missions at some nodes at some unexpected time intervals may lead to substantial

energy consumption of the nodes.

Orthogonal to these studies, we consider a heterogenous sensor network in which

sensors have significant variations in sampling and energy consumptions. A typical

example is that a sensor network deployed for ecological study consists of sensors

of different modalities including humidity, temperature, video, etc. The sensing

rates of different sensors vary, depending on their physical phenomena. Under this

setting, we investigate an on-demand wireless sensor charging paradigm. That is,
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sensors send their recharging requests to the base station according to their residual

energy status. A wireless mobile charger then will be dispatched to start a charging

tour to recharge these requested sensors. We study how to schedule the mobile

charger to maximize the number of sensors charged (charging throughput) per tour.

The challenges to tackle this problem are: (1) which sensors are to be included in this

tour? (2) what is the charging order of the sensors in this tour?

1.4 Thesis Contributions

The main contribution of this thesis is to systematically study the use of renewable

sensor networks for sustainable monitoring, including proposing new concepts, for-

mulating non-trivial optimization problems, developing novel approaches to solve

them, and evaluating the solutions through extensive experiments. The proposed

techniques schedule sensors’ duty cycle according to their energy status to optimize

the coverage quality, route data efficiently through utilizing mobile sinks to maxi-

mize the quality of the collected data, and find a close tour for mobile charger to

maximize the throughput of the mobile charger. Specifically, the thesis contributions

are listed as follows.

• Energy prediction is fundamental to the algorithm design for renewable sen-

sor networks. Existing prediction approaches are investigated and validated

in Chapter 2, using real solar data profiles obtained from The National Solar

Radiation Data Base [7] in the States, which contains the most comprehensive

collection of solar data and is freely available.

• The coverage maximization problem in a renewable sensor network is consid-

ered in Chapter 2, where a renewable sensor network is deployed for moni-

toring a set of targets for a given monitoring period. A new coverage quality

metric is proposed to measure the monitoring quality within two different time

scales: one is within each time slot, in which the monitoring quality of a tar-

get is modelled by a sub-modular function of the number of sensors covering

it; another is within the entire monitoring period, the monitoring quality of a
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target is measured by a sub-modular function of the number of time slots it

is covered. As the problem is NP-hard, efficient centralized and distributed

algorithms are devised, provided that the amount of harvested energy of each

sensor for a given monitoring period can be predicted accurately. Otherwise,

an adaptive framework is proposed to handle energy prediction fluctuation for

the monitoring period.

• Data collection in a renewable sensor network with a mobile sink is explored

in Chapters 3 and 4, where two different kinds of sink mobility are considered.

For sink with controlled mobility, the problem is to find an optimal trajectory

for the mobile sink that consists of sojourn locations in a given location space

and the exact sojourn time at each sojourn location, assuming that the mobile

sink can only collect data from one-hop sensors. Both centralized heuristic and

its distributed implementation are provided. For sink with deterministic mobil-

ity, the problem is to allocate time slots to individual sensors under their energy

replenishment rate constraints. An offline algorithm with a provable approxi-

mation ratio, and a fast, scalable online distributed algorithm are devised when

only considering maximizing the quantity of the collected data.

• The charging throughput maximization problem in a renewable sensor net-

work with a mobile charger is studied in Chapter 5, where a mobile charger is

employed to replenish energy to sensor nodes in renewable sensor networks by

utilizing wireless energy transfer technology. Considering sensors in renewable

sensor networks have significant variations in the sampling needs and energy

consumptions, an on-demand wireless sensor charging paradigm is advocated.

That is, sensors send their recharging requests to the base station according to

their residual energy status, and the base station then dispatches the wireless

mobile charger to start a charging tour and recharge these requested sensors.

For the charging throughput maximization problem, an offline approximation

algorithm is proposed, which runs in quasi-polynomial time by reducing the

formulated optimization problem to the orienteering problem with time win-

dows. The delivered solution is proven to be fractional of the optimum. Two
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online heuristics are devised where future charging request knowledge is not

available.

• For all proposed algorithms, extensive experiments by simulation are con-

ducted. The impacts of constraint parameters on the algorithm performance

are also studied, and the effectiveness of the proposed algorithms is validated

in various aspects. The performance of the proposed algorithms is compared

with that of comparable existing approaches, and their superiority is demon-

strated.

1.5 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 2 investigates the predic-

tion models of harvested energy, and formulates the coverage maximization problem,

for which an adaptive framework and heuristics are developed accordingly. Chap-

ters 3 and 4 focus on mobile data collection in renewable sensor networks using

two different types of mobile sinks, and proposes solutions for each of them sepa-

rately. Chapter 5 studies an on-demand energy replenishment in renewable sensor

networks by employing a wireless mobile charger, formulates a charging throughput

maximization problem, and devises both offline and online algorithms. Chapter 6

summarizes the thesis and proposes future work.
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Chapter 2

Target Coverage Maximization in

Renewable Sensor Networks

2.1 Introduction

Sensing coverage is a fundamental problem in wireless sensor networks for event

detection, environment monitoring and surveillance purposes. In conventional sen-

sor networks, there is a tradeoff between network lifetime and sensor coverage. To

achieve a better coverage, more sensors have to be active at the same time, then more

energy would be consumed and the network lifetime is reduced. On the other hand,

if more sensors are put into sleep to extend the network lifetime, the coverage will

be adversely affected. Most studies focused on the network lifetime prolongation. To

maximize the network lifetime, various strategies of sensor activity scheduling have

been proposed. Among them, a popular one is the adoption of duty-cycles, that is,

each sensor works either in active or sleep mode [13, 24, 37, 58, 60, 64, 99].

In comparison with conventional sensor networks, network lifetime in renewable

sensor networks is no longer a main issue since sensors can be recharged repeatedly

by renewable energy sources. This results in the research focus shift from the network

lifetime maximization to scheduling sensor activities to keep them survival through

accurate energy harvesting predictions. Several studies on target coverage have been

conducted with the aim of optimizing the coverage performance [22, 76, 86, 110].

These mentioned studies however did not consider the connectivity of the communi-

cation network induced by the activated sensors and the sink. It is well known that

both sensing coverage and network connectivity are the fundamental performance

15
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metrics for wireless sensor networks, where the coverage quantifies the quality of

monitoring while the network connectivity indicates the accessibility from the sink

to sensory data. Orthogonal to the existing work, we study how to schedule sensor

activities such that the coverage quality is maximized, subject to that the communi-

cation network induced by the activated sensors and the sink at each time moment

is connected.

In this chapter, we consider the coverage maximization problem in a renewable

sensor network, which can be stated as follows. Given a set of targets (e.g., some

critical facilities) in a monitoring region, a sensor network that consists of a set of

heterogeneous sensors powered by renewable energy and a sink is deployed to mon-

itor the set of targets for a specified period, where sensors transmit their sensing data

to the sink in a real-time manner. The problem is to activate sensors such that the tar-

get coverage quality is maximized, subject to that (i) the amount of energy consumed

by each sensor is no more than that it has been charged during this monitoring pe-

riod; and (ii) the communication network induced by the active sensors and the sink

at each time point is connected. One such an application scenario is a renewable

sensor network deployed for forest fire monitoring. Unlike most existing studies on

conventional sensor networks that the energy of each sensor decreases monotoni-

cally over time, the energy consumption at each sensor in such networks can be well

managed. In contrast, the energy harvesting rate of each sensor in renewable sen-

sor networks varies over time, and the energy of each sensor can be replenished if

needed. However, the energy consumption at each sensor must be carefully man-

aged. On one hand, if there is enough amount of harvested energy available in the

near future, we must fully make use of the harvested energy for maximizing target

coverage; otherwise, the conservative use of the harvested energy may miss the next

recharging opportunity. On the other hand, if the energy charging chances of a sen-

sor in the near future is predictably small, its energy should not be used carelessly

despite that the sensor may still have plenty of energy. Otherwise, the sensor will

expire very soon, and its coverage quality will severely decrease. In summary, time-

varying characteristics of renewable energy sources in renewable sensor networks

makes sensor activity scheduling become very difficult, not to mention ensuring that
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all activated sensors and the sink must be connected.

We approach the coverage maximization problem for a given monitoring period

by adopting a general strategy. That is, we start by dividing the entire monitoring

period into L equal numbers of time slots. We then perform sensor activation or

inactivation scheduling in the beginning of each time slot. The challenges to solve

the problem are as follows: (1) at which time slots among the L time slots, a sensor

should be activated or deactivated, as the amount of harvested energy as well as its

consumed energy at a sensor depends on not only different scheduling strategies

but also the availabilities of time-varying energy harvesting sources in the entire

monitoring period? (2) how to make sure that all activated sensors and the sink

form a connected component at each time slot? (3) how to devise an efficient sensor

scheduling algorithm whose solution will guarantee that the target coverage quality

for the entire monitoring period is maximized?

The novelty of our work lies in two aspects. We are the first to introduce a new

coverage metric to accurately measure the target coverage quality. This new metric

enables to model the coverage quality of each target by two different time scales:

One is within each time slot, in which the coverage quality of the target is modeled

by a sub-modular function of the number of sensors covering it, which implies that

the margin gain of the coverage quality of the target decreases with the number of

sensors it is covered in the time slot. Another is within the entire monitoring period,

the coverage quality of a target is measured by the number of time slots it is covered,

this metric is also modeled by a sub-modular function that may be different from the

one within each time slot, which implies that the more the number of time slots the

target is covered, the higher the coverage quality of the target will be. The overall

coverage quality of a target for the entire monitoring period then is a weighted linear

combination of these two sub-modular functions. Not only do we introduce this new

coverage quality metric, but also do we devise novel centralized and distributed algo-

rithms for the coverage maximization problem in a renewable sensor network. Also,

we propose an adaptive framework for the problem under both network connectivity

and harvesting energy prediction fluctuation constraints. The main contributions of

this chapter are as follows. We first consider quality-aware target coverage in a re-
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newable sensor network by introducing a new coverage metric that can measure the

coverage quality accurately, and formulating a novel coverage maximization problem

that takes both sensing coverage quality and network connectivity into consideration.

As the problem is NP-hard, we then devise efficient centralized and distributed algo-

rithms for it, provided that the amount of harvested energy of each sensor for a given

monitoring period can be accurately predicted. Otherwise, we propose an adaptive

framework to handle energy prediction fluctuations during the monitoring period.

We finally conduct extensive experiments by simulations to evaluate the performance

of the proposed algorithms. Experimental results show that the solutions delivered

by the proposed algorithms are very promising.

The rest of the chapter is organized as follows. Section 2.2 surveys related works.

Section 2.3 introduces basic models, defines the coverage maximization problem,

and shows its NP-hardness. A centralized heuristic algorithm and its distributed

implementation are given in Section 2.4. An adaptive framework dealing with energy

prediction fluctuation is proposed in Section 2.5. Section 2.6 presents the simulation

results, and Section 2.7 concludes the chapter.

2.2 Related Work

Sensing coverage problems in conventional sensor networks have been extensively

investigated in the past [3, 13, 15, 37, 64, 94]. One efficient method is to partition

sensors in a sensor network into multiple subsets (sensor covers) such that the sensors

in each subset can cover all targets. Thus, only one sensor cover at each time slot

is activated for a fractional of the entire monitoring period and only the sensors in

the active sensor cover are in active mode, while the others are in sleep mode to save

their energy [13]. In terms of connected coverage problem, Gupta et al. [37] proposed

the minimum connected sensor cover problem to find a minimum number of sensors

to achieve a full coverage while the communication graph induced by the sensors

is connected. They presented a greedy algorithm with a guaranteed performance

ratio, assuming that each sensor can adjust its transmission range dynamically. Wu

et al. [99] recently presented an improved approximation algorithm for it. Liu and
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Liang [64] studied the connected coverage problem with a given coverage guarantee.

They introduced the partial coverage concept, and presented a centralized heuristic

algorithm which takes both partial coverage and sensor connectivity into account

simultaneously. They also considered the full coverage and sensor connectivity by

partitioning the lifetime of a sensor into several equal intervals and finding a col-

lection of connected sensor covers such that the network lifetime is maximized [65].

Ammari and Das [3] addressed the k-coverage problem that within each scheduling

round, every location in a monitoring field is covered by at least k active sensors while

keeping all active sensors connected. They proposed several heuristic algorithms for

the problem.

Compared with the studies on sensing coverage in conventional sensor networks,

few attentions have been paid to the sensing coverage problem in renewable sensor

networks. Tang et al. [86] studied the problem and proposed an approximation al-

gorithm with an approximation ratio 1/2, by assuming that the coverage quality is

characterized by a sub-modular function and the communication graph induced by

the active sensors and the sink may be disconnected. They [87] also extended their

work by proposing distributed sensing schedule algorithms with provable conver-

gence and performance bound by fixing the duty cycle of each sensor. Dai et al. [22]

considered a similar problem for stochastic event capture by formulating a coverage

optimization problem and presenting an approximation algorithm with an approx-

imation ratio 1/2. Yang and Chin [110] considered the problem of maximizing the

network lifetime while ensuring all targets are continuously monitored by at least

one sensor. They proposed a linear programming solution to determine the acti-

vation schedule of sensors, where one subset of sensors is active while the rest of

sensors keep in sleep modes to conserve energy. However, none of these mentioned

works takes into consideration of the connectivity of active sensors and the sink.

Consequently, the sensing data generated by active sensors may not be relayed to the

sink immediately. However, many critical real-time applications do need the sensed

data to be collected in a real-time manner. Considering that the transmission energy

consumption of each sensor in most real applications is the dominant one among

its energy consumptions in sensing, computation and communications, its sensing
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data must be relayed to the sink through multiple relays to reduce its energy con-

sumption. The connectivity among active sensors and the sink thus is necessitated to

ensure such real-time data transfer. This connectivity requirement thus poses great

challenges in the design of approximation algorithms for the problem. That is why

none of approximation algorithms for the problem under the connectivity constraint

with an optimization objective expressed by a sub-modular function has ever been

developed.

2.3 Coverage Maximization Problem

We consider a renewable sensor network G = (V ∪ {s}, E) consisting of |V| hetero-

geneous stationary sensors and a sink s, which is deployed to monitor m targets

O = {o1, o2, · · · , om} in a 2D region of interest. Each sensor v ∈ V is powered by re-

newable energy source such as solar energy, and has a fixed transmission and sensing

ranges. There is an undirected edge in E between two sensors or a sensor and the

sink if they are within the transmission range of each other. For each sensor v ∈ V,

let Cv be the set of targets within its sensing range. For each target o ∈ O, let So be

the set of maximum number of active sensors covering it.

2.3.1 Energy Budget Model

Following a widely adopted renewable energy replenishment assumption [62], we

assume that the energy replenishment rate of each sensor is much slower than its

energy consumption rate, and the amount of energy harvested by the sensor in a

future time period is uncontrollable but predictable, based on its source type and

its historic energy harvesting profile. Assume that time is divided into equal time

slots [57]. Let L be the number of time slots after which the next recharging pattern

will be repeated, where a recharging pattern of solar energy depends on the weather

conditions accordingly (e.g., 24 hours on default). Assume that the L time slots

are indexed by 1, 2, · · · , L. To estimate the amount of energy harvested of each

sensor at a recharging pattern, several prediction algorithms are available [11, 44].

Kansal et al. [44] proposed the very first algorithm, referred to as the Exponentially
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Weighted Moving-Average (EWMA), which applies weighting factors to previously har-

vested sampling energy values that are constantly decreasing. At the same time, the

prediction takes into account every single harvesting energy sample with different

relevance. Let Q(t) be the prediction of the amount of harvested energy of sensor

vi ∈ V at time slot t with 1 ≤ t ≤ L. The value of Q(t) is calculated as follows.

Q(t) = w ·Q(t′) + (1− w) ·Q(t′), (2.1)

where w is a given weight with 0 < w < 1, t′ is the tth time slot in the previous

recharging pattern, and Q(t′) is the actual amount of energy harvested at time slot

t′. A similar prediction strategy has also been adopted by Noh et al [74], referred

to as the Variance Exponentially Weighted Moving-Average (VEWMA), in which the

final prediction on the amount of harvested energy Q̂(t) is calculated by adjusting

the base prediction with the current environmental conditions (e.g., a sunny day or

a cloudy day), as follows.

Q̂(t) = Q(t) · Q(t− 1)
Q(t− 1)

(2.2)

With the knowledge of its harvesting energy prediction, the energy budget P(vi)

of sensor vi ∈ V in the next L time slots is defined as

P(vi) = min{B(vi), RE(vi) +
L

∑
t=1

Q(t)}, (2.3)

where B(vi) and RE(vi) are the battery capacity and the residual energy of sensor vi

in the beginning of the previous recharging pattern, 1 ≤ i ≤ |V|.

2.3.2 Energy Consumption Model

Recall that each sensor vi ∈ V at each time slot operates in either active or sleep

(or inactive) mode. Let eactive
i and esleep

i be the energy consumptions of sensor vi in

active and sleep modes at each time slot, respectively. Assume that esleep
i � eactive

i

and the energy consumption of sensor vi in sleep mode is negligible. The sink will

determine the schedule of sensors in the beginning of every L time slots, according

to the energy budget of each sensor. By the energy neutral operation theory [44], to
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support continuous monitoring services, sensors should not consume more energy

than that they harvested at any period. The activation of a sensor thus is constrained

by the actual amount of energy it harvested. Let bi = b P(vi)

eactive
i
c be the time slot budget

of sensor vi ∈ V for a monitoring period of L time slots. Then, sensor vi cannot be

activated more than bi time slots for a monitoring period of L time slots, where P(vi)

is the energy budget of sensor vi.

2.3.3 Coverage Quality

In each time slot, a different subset of sensors will be activated, which leads to a

different subset of targets to be covered. Also, the more time slots in which a target

is covered, the higher the coverage quality of the target will be. To measure the

coverage quality of targets, we here consider the target coverage quality within two

different time scales, which is illustrated by a simple motivation example in Fig. 2.1,

where sensors v1, v2, and v3 are deployed to monitor targets o1, o2, and o3 for a

monitoring period of 6 time slots. Assuming that the time slot budgets of sensors v1,

v2, and v3 are 2, 4, and 3, respectively. There are two different solutions A and B for

sensor activation in a given monitoring period. Targets in solution A are covered by

more sensors in each time slot but for less time slots, e.g., target o1 is covered by both

sensors v1 and v3 in time slots 1 and 2, but it is only covered by 3 time slots among

the monitoring period of 6 time slots. Targets in solution B are covered by more time

slots but by less sensors in each time slot, e.g., target o1 is covered by 4 time slots,

but it is only covered by a single sensor at time slots 1, 3, and 4, respectively. From

these two different solutions, it can be seen that the coverage quality of each target o

is determined by not only the number of time slots it is covered but also the number

of sensors it is covered within each time slot.

In the following we first adopt a utility metric similar to the one in [58], where

the coverage quality of a target is measured by the number of time slots in which

the target is covered. Specifically, for each target o ∈ O at each time slot t with

1 ≤ t ≤ L, let N1(o, t) = {t}, which is a set containing the index of time slot t if

target o is covered by an active sensor in time slot t; N1(o, t) = ∅ otherwise. Let No
c
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Figure 2.1: A simple motivation example for measuring the coverage quality.

be the set of time slots in which target o is covered, then No
c = ∪L

t=1N1(o, t). Clearly,

No
c is a subset of the set of all time slots {1, 2, . . . , L}. Let U1(o) = f1(No

c ) represent

the coverage quality of target o, by counting the number of time slots the target

being covered during a monitoring period of L time slots, where f1 is a sub-modular

function whose definition is as follows. f1 : 2A 7→ R≥0 satisfies the following three

properties:

(1) f1(∅) = 0; (2.4)

(2) f1(A1) ≤ f1(A2) where A1 ⊆ A2 ⊆ A (2.5)

and A is a finite ground set; (2.6)

(3) f1(A1 ∪ {a})− f1(A1) ≥ f1(A2 ∪ {a})− f1(A2) (2.7)

where A1 ⊆ A2 ⊆ A and ∃a ∈ A \ A1 ∪ A2. (2.8)

The rationale behind the adoption of the sub-modular function f1 (sometimes it

is also referred to as a utility function) is that f1 is a monotonic increasing function,

whose marginal utility decreases with the increase of the number of time slots. In

other words, for each target o ∈ O, the more time slots it is covered, the higher

coverage quality it will have. However, with the further increase on the number of

time slots it is covered, the net gain of its coverage quality becomes diminishing.

The use of coverage metric U1(·) to measure the target coverage quality however

is biased. Under this metric, for a given target, it cannot be distinguished whether
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the target is covered by only a single sensor or by multiple sensors at a given time

slot. For example, in event detection applications, the more amount of the sensors an

event is detected by, the higher probability the event can be discovered [111, 112]. To

capture the coverage quality of each target both in each time slot and for the entire

monitoring period, we then introduce a new coverage quality metric within two

different time scales that takes into account not only the number of sensors covering

a target at each given time slot but also the number of time slots the target is covered

for the monitoring period of L time slots, through two non-decreasing sub-modular

functions f1(·) and f2(·), respectively. Specifically, for each target o ∈ O at each time

slot t, let U2(o, t) = f2(St
o) represent the coverage quality of target o at time slot t,

where St
o ⊆ So is the set of active sensors covering target o at time slot t. The coverage

quality of target o for L consecutive time slots thus is

U(o) = α ·U1(o) + (1− α) ·
L

∑
t=1

U2(o, t), (2.9)

where α is a given utility weight with 0 ≤ α ≤ 1. When α = 0, this means we

only consider the coverage quality caused by the number of sensors covering target

o, while α = 1 means we only consider the coverage quality by the number of time

slots target o being covered during the entire monitoring period. Hence, the overall

coverage quality achieved for the L time slots is ∑
o∈O

U(o).

2.3.4 Problem Statement

Given a renewable sensor network G = (V ∪ {s}, E) deployed for monitoring a set of

targets O for a period of L consecutive time slots, and the time slot energy budget bi

of each sensor vi ∈ V, the coverage maximization problem in G is to activate a subset of

sensors Vt (Vt ⊆ V) at each time slot t with 1 ≤ t ≤ L such that the overall coverage
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quality for the monitoring period ∑
o∈O

U(o) is maximized, where

∑
o∈O

U(o) = α ∑
o∈O

U1(o) + (1− α) ∑
o∈O

L

∑
t=1

U2(o, t) (2.10)

= α ∑
o∈O

f1(∪L
t=1N1(o, t)) + (1− α) ∑

o∈O

L

∑
t=1

f2(St
o), (2.11)

N1(o, t) =


∅ if 6 ∃v ∈ Vt s.t. o ∈ Cv

{t} if ∃v ∈ Vt s.t. o ∈ Cv,
(2.12)

and

St
o =


∅ if no sensor node in Vk covers target o

{v | v ∈ Vt, o ∈ Cv} otherwise,
(2.13)

subject to the following two constraints:

1. the induced communication subgraph by activated sensors in Vt and the sink

is connected, i.e., G(Vt ∪ {s}) is a connected graph for each time slot t with

1 ≤ t ≤ L. Thus, the sensing data of activated sensors in Vt can be relayed to

the sink in real time.

2. For each sensor vi ∈ V, the number of time slots in which it is activated is

no more than its time slot budget bi so that none of the sensors will run out

of its budgeted energy, i.e., ∑L
t=1 I(Vt, vi) ≤ bi, where I(Vt, vi) is an indicator

function, which is defined as I(Vt, vi) = 1 if vi ∈ Vt and I(Vt, vi) = 0 otherwise.

2.3.5 NP-Hardness

The coverage maximization problem defined is NP-hard. It is easy to verify that

the dynamic activation schedule problem in [86] is a special case of the problem,

where each sensor can communicate with the sink directly, and the utility weight α

is 1. Even for this special case, it has been shown to be NP-hard, which implies the

NP-hardness of the coverage maximization problem.
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2.4 Offline Heuristics

Due to the NP-hardness of the coverage maximization problem, we here propose a

greedy heuristic for it, assuming that the energy budget of each sensor for a moni-

toring period of L time slots is given in advance. In general, for each time slot t with

1 ≤ t ≤ L, we assume that there is a corresponding tree rooted at the sink consisting

of all activated sensors at time slot t. Initially, there is a forest consisting of L trees

with each tree containing only the tree root - the sink. Recall that bi is the time slot

budget of sensor vi ∈ V in the beginning of a monitoring period of L time slots.

Then, sensor vi can join no more than bi trees in the forest; otherwise, its energy

budget is not enough to support its operation.

The construction of the forest proceeds iteratively. Within each iteration, a sensor

node is added to one of the L trees in the forest if it results in the maximum utility

gain in terms of the coverage quality by eq. 2.10. This procedure continues until

either no more sensors can be added to the trees, or no more utility gain on the

coverage quality can be achieved. Note that none of the sensor nodes is added to a

single tree twice.

2.4.1 Centralized Algorithm

Given the time slot budget bi ≥ 0 of sensor vi ∈ V for all i with 1 ≤ i ≤ |V|, we first

construct an auxiliary graph G′ = (V ′ ∪ {s1, s2, · · · sL}, E′) from the renewable sensor

network G = (V, E) as follows.

For the sink s, there are L corresponding copies s1, s2, · · · , sL in G′ with each

being the root of a tree Tj, 1 ≤ j ≤ L. These L trees form a forest. For each sensor

vi ∈ V, there are bi corresponding node copies v(1)i , v(2)i , · · · , v(bi)
i in V ′ with each

corresponding an activation of sensor vi in one of up to bi time slots, assuming

that bi � L. For each edge (vi, s) ∈ E that corresponds that the sink and sensor

vi are within the transmission range of each other, there are bi × L corresponding

edge copies (v(1)i , s1), · · · , (v(bi)
i , s1), · · · , (v(1)i , sL), · · · , (v(bi)

i , sL) in E′. For each edge

(vi, vj) ∈ E that corresponds that sensors vi and vj are within the transmission range

of each other, there are bi × bj corresponding edge copies (v(1)i , v(1)j ), · · · , (v(bi)
i , v(1)j ),
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· · · , (v(1)i , v
(bj)

j ), · · · , (v(bi)
i , v

(bj)

j ) in E′.

Fig. 2.2(b) is an illustrative construction of graph G′ of the original renewable

sensor network G = (V ∪ {s}, E) in Fig. 2.2(a), where the time slots are indexed by

1, 2, · · · , L with L = 6 and the sensor set V = {v1, v2, v3, v4, v5}. Let bi = i be the time

slot energy budget of each sensor vi ∈ V for a given monitoring period of L time

slots, 1 ≤ i ≤ 5.
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(b) G′ = (V′ ∪ {s1, s2, · · · , sL}, E′)

Figure 2.2: An example: L = 6 and a renewable sensor network G = (V ∪ {s}, E)
with the set of sensors V = {v1, v2, v3, v4, v5} and bi = i for all i with 1 ≤ i ≤ 5.

The forest consists of L trees T1, T2, · · · , TL, which is constructed as follows. Ini-

tially, each tree Tj contains only the root node sj, 1 ≤ j ≤ L. We add the other

copies of sensor nodes in V ′ to the trees iteratively. Within each iteration, a node is

added to the forest if it leads to the maximum utility gain of the coverage quality.

Specifically, for each node vk
i ∈ V ′ with 1 ≤ k ≤ bi, let vi ∈ V be its corresponding

sensor and V(vk
i ) = {v

(1)
i , v(2)i , · · · , v(bi)

i } the set of copies of vi in G′. Recall that Cvi

is the set of targets within the sensing range of vi. We set C(vk
i ) = Cvi for each node

vk
i , which is the set of targets covered by node vk

i . For each tree Tj rooted at node

sj, let V(Tj) ⊆ V ′ be the set of nodes in tree Tj and C(Tj) ⊆ O the set of targets

covered by the sensor nodes in V(Tj) with 1 ≤ j ≤ L. Recall that No
c is the subset

of time slots in which target o is covered for the monitoring period of L time slots,

where No
c = {j | ∃j s.t. o ∈ C(Tj), 1 ≤ j ≤ L}. For each node vk

i ∈ V ′ that has not

been contained by any tree and one of its adjacent nodes in G′ is in tree Tj, we can

calculate the potential utility gain of the coverage quality ∆Uij if node vk
i is added to
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Tj by Eq.(2.14),



0 V(vk
i ) ∩V(Tj) 6= ∅ implies that another copy of vi has been contained by tree Tj

α · ∑
o∈{C(vk

i )−C(Tj)}
( f1(No

c ∪ {j})− f1(No
c )) + (1− α) · ∑

o∈C(vk
i )

( f2(S
j
o ∪ {vi})− f2(S

j
o))

otherwise
(2.14)

where V(vk
i )∩V(Tj) 6= ∅ represents that sensor vi has already been activated at time

slot j.

Algorithm 1 Greedy_Heuristic

Input: A renewable sensor network G = (V ∪ {s}, E), a set of targets O, and time
slots that are indexed by 1, 2, · · · , L. For each sensor vi ∈ V, its energy budget
P(vi) in L time slots is given.

Output: For each time slot j, a set of sensors Vj ⊆ V which will be activated at time
slot j with 1 ≤ j ≤ L.

1: Calculate its time slot budget bi by its energy budget P(vi) for each sensor vi ∈ V;
2: Construct an auxiliary graph G′ = (V ′ ∪ {s1, s2, · · · , sL}, E′);
3: Construct a forest in G′ consisting of L trees T1, T2, · · · , TL rooted at nodes

s1, s2, · · · , sL, respectively;
4: Tj ← ({sj}, ∅) initially, 1 ≤ j ≤ L;
5: W ← V ′; /* The nodes in W have not been examined */
6: /* Add the nodes in W to the L trees one by one */
7: zero_gain←′ true′;
8: while (there is a node in W that has not been contained by any tree) and zero_gain

do
9: Calculate the gain of the coverage quality ∆Uij for each node vk

i ∈ W and one
of its adjacent nodes in a tree Tj rooted at sj for each of these adjacent nodes in
the adjacent list of vk

i ;
10: Identify a node vk′

i′ with the maximum ∆Ui′ j′ among the nodes in W;
11: if ∆Ui′ j′ == 0 then
12: zero_gain ←′ f alse′; /* No further improvement in the coverage quality is

achieved */
13: else
14: V(Tj′)← V(Tj′) ∪ {vk′

i′ }; /* Add node vk′
i′ to tree Tj′ */

15: W ←W \ {vk′
i′ };

16: end if
17: end while
18: Construct Vj from V(Tj) by adding the corresponding sensor of a copy of a sensor

in V(Tj);
19: return The set of active sensors at time slot j is Vj for all j with 1 ≤ j ≤ L.
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We then choose a node vi′ ∈ V ′ with the maximum utility gain of the coverage

quality ∆Ui′ j′ , and add vi′ to tree Tj′ if this results in the maximum gain of the cov-

erage quality. This procedure continues until all nodes are added to the forest or

no further improvement in the coverage quality can be achieved. That is, either all

nodes in G′ have been added to the trees in the forest, or no node addition results in

a positive utility gain of the coverage quality. As a result, trees T1, T2, · · · , TL rooted

at nodes s1, s2, · · · , sL are obtained, where the nodes in tree Tj rooted at sj represent

that their corresponding sensors in G will be activated at time slot j, and these sen-

sors and the sink will be connected, 1 ≤ j ≤ L. Notice that it is very likely there are

some trees in the forest containing the root node only. If this is the case, it implies

that none of the sensors in the network at the corresponding time slot of this tree is

active. The detailed description of the proposed algorithm is given in Algorithm 1.

Theorem 1 Given a renewable sensor network G = (V ∪ {s}, E) deployed for monitoring a

set of targets in the region for a period of L time slots, there is an algorithm Greedy_Heuristic

for the coverage maximization problem, which takes O(b3
max · |V|2 · |E|+ bmax · dmax · L) time,

where |V| is the number of sensor nodes, bmax = maxvi∈V{bi}, dmax = |N(v)|, and N(v)

is the set of neighbors of node v in G. Notice that dmax usually is a constant, while bmax is a

constant and even if it is not, then bmax � L.

Proof We first show that the algorithm is correct. That is, each sensor node will

not run out of its energy budget. As there are bi nodes for sensor vi in G′ with each

corresponding its energy consumption at one time slot. Thus, vi will not run out

of its energy budget as it can only join at most bi trees. Following the construction

of the trees, each of the bi copies of vi can appear in a tree only once. Also, within

the time slot to which a tree corresponds, all sensors in the tree will be activated,

and the activated sensors and the sink are in the same connected component. Thus,

the solution delivered by algorithm Greedy_Heuristic is a feasible solution to the

coverage maximization problem.

We then analyze the time complexity of the proposed algorithm Greedy_Heuristic

in the following. The auxiliary graph G′ contains at most |V| · bmax nodes since there

are at most bmax copies in G′ of each node in G. The number of edges in G′, |E′|,
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is no more than dmax · bmax · L + ∑e∈E b2
max = bmax · dmax · L + b2

max · |E| edges. Thus,

the construction of G′ takes O(bmax · dmax · L + |V| · bmax + b2
max|E|) time. Within each

iteration, for each unscheduled node vk
i ∈ V ′, let NG′(vk

i ) be its neighbor set in G′, we

need to calculate the incremental coverage quality ∆Uij for each v′ ∈ V(Tj)∩ NG′(vk
i )

with tree root sj, and choose a node vk′
i′ with the maximum incremental coverage qual-

ity among the unscheduled nodes in V ′, this takes O(∑vk
i ∈V′ |NG′(vk

i )| · |V ′| · Cmax) =

O(b2
max · |V| · |E| · Cmax) = O(b2

max|V||E|) time, where Cmax is the maximum num-

ber of targets covered by a sensor, which usually is a constant in practice. It is

easy to verify that the number of iterations of the proposed algorithm is bounded

by |V ′|. The algorithm thus takes O(bmax · |V| · b2
max · |V| · |E| + bmax · dmax · L) =

O(b3
max|V|2|E|+ bmax · dmax · L) time. �

2.4.2 Distributed Algorithm

As real sensor networks are distributive, it is desirable that algorithms for sensor net-

works are distributed algorithms, whereas the solution obtained by the centralized

algorithm usually serves as the benchmark of the solutions obtained by distributed

algorithms. In this section, we propose a distributed implementation of the proposed

centralized algorithm Greedy_Heuristic. Following most common assumptions in

the design of distributed algorithms, we assume that the amount of energy con-

sumed for finding a distributed solution can be neglected, in comparison with the

amount of energy consumed for sensing coverage, local computation and sensing

data transmission.

The idea behind the distributed implementation is that we treat the original net-

work G as a host graph, and the constructed auxiliary graph G′ as a guest graph. We

‘embed’ the guest graph into the host graph. Each node vi in the host graph G

simulates its bi copies in the guest graph G′. Each link (vi, vj) in the host graph G

simulates its corresponding bi · bj links in the guest graph G′ between the copies of

nodes vi and vj. In the host graph G, there is a broadcast tree which is dynamically

constructed. The broadcast tree will be used for tree information broadcasting of the

L trees constructed from G′, it also serves as collecting ‘joining-tree request’ messages
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from non-tree nodes in G′. In the guest graph G′, there is a forest consisting of the L

trees with the sensors in each tree corresponding to the activated sensors at one time

slot among the L time slots in the monitoring period. The sink contains the L trees of

the forest with each tree Tj having a tree root at sj and spanning all activated sensors

at time slot j, 1 ≤ j ≤ L. Assume that the broadcast tree in G contains the sink only

initially.

The construction of the forest F which consists of the L trees T1, T2, . . . , TL pro-

ceeds iteratively. Within each iteration, some nodes in V ′ join some of the L trees

in the forest, and their ‘joining-tree request’ messages will be propagated to the sink

along the links of the broadcast tree. The sink then calculates the coverage quality

and broadcasts the L tree messages to those unjoined nodes which are close to the

tree nodes, i.e., there is an edge in G′ between a tree node and an unjoined node.

This procedure continues until either all the nodes in V ′ have joined the trees in the

forest, or there is no improvement on the utility gain of the coverage quality. In the

following, we detail the distributed implementation of the proposed algorithm at

iteration t.

Within iteration t, let Vt(F ) be the set of nodes in the forest and Wt = V ′ \Vt(F )

the set of nodes that are not in the forest yet. Assume that each node in Vt(F ) is

labelled as a tree node which contains the following information: its tree root, the set of

members in the tree, and the value of the coverage quality. Let Et = E′ ∩ (Vt(F )×Wt) be

the set of edges in G′ across the two sets Vt(F ) and V ′ \ Vt(F ). For each unlabeled

node in v ∈ Wt, let (v, u1), (v, u2), · · · , (v, ul) be its incident edges in Et. These l

nodes u1, u2, . . . , ul form a set, which is then partitioned into l′ subsets, where all

the nodes in the same tree in F belong to the same subset. Discard these subsets in

which the trees contain a copy of v already. Denote by l′′ the remaining subsets (or

trees). Clearly l′′ ≤ l′ ≤ l. Compute the utility gain of the unlabeled node v if it is

added to one of the l′′ trees, identify a tree with the maximum gain of the utility, and

v then sends a ‘joining-tree request’ to the tree node and puts it as a candidate of

joining that tree. All tree nodes send their received ‘joining-tree request’ messages to

the sink. The sink then updates the members of the trees in the forest F , by adding

the new members to the trees and updating their utility values. For a given tree (e.g.,



32 Target Coverage Maximization in Renewable Sensor Networks

Tj), there may have multiple joining-tree requests such as (v, u) and (v′, w) where

u, w ∈ V(Tj). If both v and v′ are different copies of the same sensor, only one of

them will join the tree. Or, if there is no positive gain for all trees or all the nodes

in V ′ have been included in forest F , the procedure terminates. Otherwise, the sink

broadcasts the updated information of the L trees along the links of the broadcast

tree. Each unlabeled node in G′ that has sent a ‘joining-tree request’ message will

check whether it becomes a member in its requested tree. If yes, label itself as a tree

node, and check whether its host node is included in the broadcast tree already. If

not, set the host node as a tree node in the broadcast tree, and send a message to its

parent host node. The parent host node then sets the host node as one of its children

in the broadcast tree.

v v v v v

x
y
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T

TTT
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Figure 2.3: An illustration of an unlabeled node v joining one of the L trees.

We here use an example to illustrate the procedure of node joining the trees (see

Fig. 2.3). Assume that an unlabeled node u has 5 tree neighboring nodes v1, v2, . . . , v5,

and two unlabeled neighboring nodes x and y. We further assume that v1 and v3 are

in the same tree in the forest and denote by this tree as T1. Nodes v2, v4 and v5 are

in trees T2, T3 and T4, respectively. We further assume that tree T3 contains a copy

of sensor u already. Thus, in this case l = 5, l′ = 4 and l′′ = 3. Node v can join

either of trees T1, T2, and T4. Assume that u joining T2 will result in the maximum

utility gain of coverage quality utility, then node u sends a ‘joining-tree request’ to
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the tree node v2 for joining T2. The sink then updates each of the L tree information

once it receives all ‘joining tree request’ messages from its tree nodes. Assume that

it updates tree T2, if there is no other messages from the other unlabeled nodes that

are the copies of the same sensor as node u, then u is added to T2 as a new member.

Otherwise, the sink chooses one of different copies of the same sensor to admit, and

broadcasts all updated tree information to each tree node through the broadcast tree.

When u received the updated message, it checks whether it has been admitted. If

yes, set itself as a tree node, and also check whether its host node is in the broadcast

tree. Otherwise, set the host node as a tree node in the broadcast tree, and send its

parent in the tree a message that it will be its child, and its parent node sets it as one

of its children.

Now, we estimate the utility gain delivered by the proposed distributed algo-

rithm. Consider a tree Tj at iteration t, assume that the member set of Tj is Vt(Tj)

prior to iteration t. Let v1, v2, . . . , vk be the nodes added to Tj after iteration t, then

the estimated gain of the utility in Tj is ∑k
i=1 U(Vt(Tj) ∪ {vi}) when these nodes

joined it. The actual increase on the utility gain in tree Tj however is U(Vt(Tj) ∪

{vi | 1 ≤ i ≤ k}) ≤ ∑k
i=1 U(Vt(Tj)∪ {vi}). The detailed implementation of Algorithm

Distributed_Implement consists of two subroutines Distributed_Implement_Base

_Station as Algorithm 2 and Distributed_Implement_Sensor as Algorithm 3.

Algorithm 2 Distributed_Implement_Base_Station

1: Broadcast an initial message which contains the following information: L trees
with each having root at it, its coverage quality utility value, and its members;

2: while Receive ‘joining-tree request’ messages from its broadcast tree nodes do
3: if No ‘joining-tree request’ messages are received or all nodes are included in

the forest then
4: Terminate; /*The sensor schedules are finalize*/
5: else
6: Process received requests by removing redundancies. That is, for a given

tree Tj, there may have multiple joining requests originated from the same
sensor, then only one of them will join;

7: Broadcast the updated broadcast message which contains the updated tree
nodes and the value of coverage quality along the broadcast tree edges to
each tree node; /* Start next iteration */

8: end if
9: end while



34 Target Coverage Maximization in Renewable Sensor Networks

Algorithm 3 Distributed_Implement_Sensor

1: while Receive a broadcast message from its neighbor nodes or the sink do
2: if It is already a tree node then
3: Broadcast this message to its children nodes or other neighbor nodes;
4: else if Its ‘joining-tree request’ in the previous round has been admitted then
5: Label itself as a tree node;
6: Broadcast this message to its neighbor nodes;
7: else
8: Identify which tree that it should join through computing the utility gain

of the coverage quality if it is added to the tree, and choose a tree with the
maximum gain of the utility;

9: Send a ‘joining-tree request’ message to its parent node;
10: end if
11: end while
12: while Receive ‘joining-tree request’ messages from other neighbor nodes or its

children nodes do
13: Forward the received messages along its tree paths towards its parent nodes;
14: end while

Lemma 1 Algorithm Distributed_Implement delivers a feasible solution to the coverage

maximization problem.

Proof Since algorithm Distributed_Implement consists of a number of iterations,

we show that the final L trees in the forest is a feasible solution to the problem by

induction on the number of iterations. At iteration t = 0, there are L trees with each

containing a root node only. It is a feasible solution. Let Ft be the forest of the L

trees constructed so far by iteration t − 1, in which each tree meets the following

conditions: (1) there is no more than one copy of each sensor in each tree; (2) the

communication subgraph induced by the sensor nodes in each tree and the sink

(the tree root) is connected. We now deal with iteration t. Within iteration t, some

unlabeled nodes (or non-tree nodes) join the trees in Ft. Clearly, if another copy

of a joining node is already in a tree, it will not be added to the tree. Or, if there

are multiple copies of a sensor seeking to join a tree, only one of them will succeed.

Also, there must have an edge in G′ between a tree node and the joining node.

Thus, the resulting forest Ft+1 is still feasible. When no positive utility gain of the

coverage quality can be obtained at iteration t, this implies that the trees containing
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the neighbors of each node v ∈Wt have already contained another copy of the sensor

that node v is one of its copies. The lemma then follows. �

Theorem 2 Given a renewable sensor network G = (V ∪ {s}, E) deployed to monitor a set

of targets for a period of L time slots, there is a distributed algorithm Distributed_Implement

for the coverage maximization problem, which takes O(L|V| + |V|2) time and O(L|V|2 +

|E|) messages, where |V| is the number of sensors and |E| is the number of links in G.

Proof Following Lemma 1, it can be seen that algorithm Distributed_Implement

will deliver a feasible solution to the coverage maximization problem. Assume that

there are l iterations of the entire algorithm. Within iteration i, the amount of time

spent for the message broadcasting of the L trees is max{L, ti} by broadcasting the L

tree messages along the tree edges of the broadcast tree in a pipeline manner, where ti

is the longest one among the shortest distances between the sink and a node in Wt at

iteration i, clearly ti ≤ |V|, 1 ≤ i ≤ l. The time for collecting the ‘joining-tree request’

messages from joining nodes in Wt through the tree edges is ti, The number of mes-

sages needed for iteration i thus is mi = O(L(ni − 1) + |Ei|) = O(L|V|+ |Ei|), where

ni is the number of nodes in the broadcast tree of the host graph at iteration i. There

are l iterations of the distributed implementation of the proposed algorithm, thus,

the time complexity of the distributed implementation of the proposed algorithm is

O(∑l
i=1 max{L, ti}) = O(∑l

i=1 max{L, |V|}) = O(max{L|V|, |V|2}) = O(L|V|+ |V|2)

since l ≤ |V|. Similarly, the number of messages needed by the distributed im-

plementation of the proposed algorithm is O(∑l
i=1 mi) = O(∑l

i=1(L|V| + |Ei|)) =

O(L|V|2 + ∑l
i=1 |Ei|) = O(L|V|2 + |E|) since ∑l

i=1 |Ei| = |E|. The theorem then fol-

lows. �

2.5 Online Dynamic Optimization Framework

The proposed centralized and distributed algorithms so far for the coverage maxi-

mization problem are based an assumption. That is, the energy budget of each sensor

for the entire monitoring period of L time slots can be accurately predicted. In reality,
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the accuracy of energy prediction however depends heavily on weather conditions

and the prediction duration. Particularly, a longer period prediction usually is less

accurate. The assumption thus is problematic in realistic applications, and especially

for sensors whose actual amounts of harvested energy are significantly less than their

predicted amounts, they may not have enough energy to maintain their scheduled

activities for the monitoring period. Moreover, other active sensors with sufficient en-

ergy may also be inversely affected by these sensors when they serve as relay nodes

between the sink and the sensors with sufficient energy. Consequently, the overall

coverage quality of the network will drastically degrade. To remove or eliminate

this realistic assumption, in this section we propose an adaptive framework to deal

with harvesting energy prediction fluctuations, and show that under this adaptive

framework, the proposed centralized and distributed algorithms are still applicable.

The basic idea is that we schedule sensor activities by a ‘dynamic interval’ con-

cept, where an interval consists of the number of consecutive time slots that is sig-

nificantly less than L, while the length of an interval is adaptively determined by the

energy prediction accuracy so far. Thus, the entire monitoring period of L time slots

consists of a number of intervals, and the proposed algorithm Greedy_Heuristic or

Distributed_Implement is applied within each of these intervals. The only modi-

fication to these algorithms is that we cannot fully make use of all predicted energy

budget for this interval, as the sensors in future intervals may not be recharged again.

Instead, we only use a fraction γ of the energy budget for the current interval, e.g.,

0.4 ≤ γ < 1. Specifically, let |Ii| be the number of time slots in an interval Ii.

In the beginning of interval Ii, we first compute the amount of predicted energy

of each sensor in this interval, by applying a given prediction algorithm EWMA

in [44]. We then schedule sensor activities within the interval by applying algo-

rithm Greedy_Heuristic (or algorithm Distributed_Implement). Given an inter-

val Ii, let V(Ii) be the set of active sensors in Ii. The energy prediction accuracy

of a sensor v ∈ V(Ii) θi(v) is defined as θi(v) = |Qv− Q̄v|
Qv

, where Qv and Q̄v are

the actual and predicted amounts of harvested energy of sensor v in Ii. Denote by

θi = ∑
v∈V(Ii)

θi(v)/|V(Ii)| the energy prediction accuracy of interval Ii, which is the aver-

age energy prediction accuracy among active sensors in this interval. We adaptively
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adjust the number of time slots |Ii+1| for the next interval Ii+1 by the energy pre-

diction accuracy θi in Ii. The number of time slots |Ii+1| for the next interval Ii+1 is

defined as follows.

|Ii+1| =


max{1, b|Ii| · βc} θi ≥ ε

min{Lini, b |Ii |
β c, L′} otherwise,

(2.15)

where β is a tuning rate with the default value of 0.5 in the rest of chapter with

0 < β ≤ 1, Lini is a given initial value with the default value of d0.2 · Le, and L′ ≤ L

is the remaining available number of time slots for a monitoring period of L time

slots, i.e., L′ ≤ L. That is, when the energy prediction in interval Ii is quite accurate

(i.e., the value of θ is less than a given threshold ε), the number of time slots |Ii+1|

is increased for the next interval Ii+1 by setting |Ii+1| = |Ii |
β until it is either Lini or

L′; otherwise, the number of time slots is decreased by setting |Ii+1| = |Ii| · β until

it decreases to 1. Thus, the entire monitoring period of L time slots consists of a

number of variable-length intervals. This procedure continues until all the L time

slots have been scheduled. The detailed adaptive optimization framework for the

quality coverage maximization problem is described in Algorithm 4.

Notice that in terms of the energy budget allocation to the current interval Ik in

Algorithm Adaptive_Framework, only a fraction of the energy budget Pk(vi) of each

sensor vi ∈ V is allocated to interval Ik. The rationale behind is that we need to

keep some residual energy of the sensor for later intervals if no further energy can

be harvested in future intervals (such as obtaining the solar energy in the middle of

night).

Theorem 3 Given a renewable sensor network G = (V ∪ {s}, E) deployed to monitor a set

of targets in the region for a period of L time slots, there is an algorithm Adaptive_Framework

for the coverage maximization problem, which takes O(b3
max|V|2|E|+ dmaxbmaxL) time, where

|V| is the number of sensors, where bmax,i = maxvj∈V{bj} at interval Ii, bmax = ∑l
i=1 bmax,i,

dmax = |N(v)|, and N(v) is the set of neighbors of node v in G, assuming that there are l

intervals to cover the entire monitoring period of L time slots. Notice that dmax usually is a

constant while bmax is a constant and even if it is not, then bmax � L.
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Algorithm 4 Adaptive_Framework

Input: A renewable sensor network G = (V ∪ {s}, E), a set of targets O, and time
slots that are indexed by 1, 2, . . . , L.

Output: Schedule sensor activities in entire L time slots.

1: /* These settings can be changed according to specific requirements */
2: β← 0.5; Lini ← d0.2 · Le;
3: |I1| ← Lini; /* Initial the first interval */
4: L′ ← L; /* The remaining number of time slots for the entire of L time slots */
5: /* Schedule sensors’ activities interval by interval */
6: /*Assume that the current interval is Ik with k ≥ 1*/
7: while L′ > 0 do
8: for each sensor vi ∈ V do
9: Predict the amount of energy harvested of vi in the current interval Ik;

10: Compute its energy budget Pk(vi) by Eq. (2.3);
11: The amount energy budget allocated for the current interval Ik is γBk(vi)

where γ is a constant with 0.4 ≤ γ < 1, e.g., γ = 0.5
12: end for;
13: Schedule sensor activities within the current interval Ik by invoking algorithm

Greedy_Heuristic (or algorithm Distributed_Implement). Notice that in
the construction of the auxiliary graph, instead of L trees rooted at sj with
1 ≤ j ≤ L, there are |Ik| trees rooted at sk

j with 1 ≤ j ≤ |Ik|, the budget of each
sensor vi now is bk

i in the current interval Ik.
14: L′ ← L′ − |Ik|; /* Update the remaining available number of time slots */
15: /* In the end of the current interval, examine the energy prediction accuracy

θ in the current interval; adjust the number of time slots in the next interval
according to the energy prediction accuracy by Eq. (2.15) */

16: if θk ≥ ε then
17: /* decrease the number of time slots in the next interval */
18: |Ik+1| ← max{1, b|Ik| · βc};
19: else
20: /* increase the number of time slots in the next interval */
21: |Ik+1| ← min{Lini, L′, b |Ik |

β c};
22: end if
23: end while
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Proof Following Theorem 1, it can be seen that algorithm Adaptive_Framework will

deliver a feasible solution to the coverage maximization problem. Assume that there

are l intervals of the entire monitoring period of L time slots, denoted by I1, I2, . . . , Il ,

respectively. Let Ii be the ith interval with 1 ≤ i ≤ l, i.e., ∑l
i=1 |Ii| = L. Let bmax,i

be the maximum number of energy budget among sensors at interval i. Thus, algo-

rithm Greedy_Heuristic will be invoked l times, and the amount of time taken by

each of its invoking is O(b3
max,i|V|2|E|+ dmaxbmax,i|Ii|) for interval Ii. The algorithm

Adaptive_Framework consists of l intervals, thus, its time complexity is

O(
l

∑
i=1

(b3
max,i|V|2|E|+ dmaxbmax,iL))

= O(|V|2|E|(
l

∑
i=1

bmax,i)
3 + dmaxL(

l

∑
i=1

bmax,i)))

= O(b3
max|V|2|E|+ dmaxbmaxL), (2.16)

where bmax = ∑l
i=1 bmax,i. �

Notice that the time complexity of each interval is affected by both the network

size and the interval length. The interval length should be carefully chosen based on

the network size, such that the algorithm can run fast in time less than the interval

length.

The distributed implementation of algorithm Distributed_Implement is similar

to the one in the previous section, omitted.

2.6 Performance Study

In this section, we study the performance of the proposed algorithms through exper-

imental simulation. We also investigate the impact of related parameters: network

size, number of targets, tuning rate β, threshold ε, and parameter γ on the coverage

quality.
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2.6.1 Experimental Environment Setting

We consider a renewable sensor network consisting of 100 to 500 sensors randomly

deployed in a 100m × 100m square region, where a sink is randomly located. The

targets in O are also randomly deployed in this square region. We consider a mon-

itoring period of 24 hours with each time slot of 30 minutes, i.e., the monitoring

period consists of L = 48 time slots. We adopt the energy consumption parameters

of real radio CC2420 [89], which consumes 56.4mW and 0.06mW when it is in active

and sleep modes, respectively. Each sensor is powered by a solar panel with a di-

mension 10mm× 10mm. The solar power harvesting profile is derived from the solar

data profiles in The National Solar Radiation Data Base (NSRDB) in the States [7],

which contains the most comprehensive collection of solar data. Specifically, for each

different network topology for a one day monitoring period, each sensor node is

assigned a solar data sequence of one day. Each data item in the sequence is the

amount of energy harvested in that 30-minute time slot of that day. For the sake of

convenience, we assume that both the sink and sensor nodes have identical trans-

mission ranges of 20 and sensing ranges of 25 meters. We further assume that the

given coverage quality weight α is 0.5 in the default setting. Denote by LOG a utility

function which is the sum of two sub-modular functions: f1(No
c ) = log (|No

c |+ 1)

and f2(St
o) = log (|St

o|+ 1). Similarly, denote by SQR another utility function which

is the sum of two sub-modular functions: f1(No
c ) =

√
|No

c | and f2(St
o) =

√
|St

o|.

We will adopt these two different utility functions to measure the target coverage

quality. Each value in figures is the mean of the results by applying each mentioned

algorithm to 30 different network topologies with the same network size.

2.6.2 Harvested Energy Prediction

We first investigate the accuracy of the harvested energy prediction approach VEWMA

in comparison with the one of a basic prediction approach EWMA, using the real solar

data profiles obtained from The National Solar Radiation Data Base (NSRDB) in the

States [7] which contains the most comprehensive collection of solar data and is freely

available.
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Fig. 2.4 shows the actual solar data measurements within 10 consecutive days

under different weather conditions and the predicted values by algorithms EWMA and

VEWMA, respectively, from which it can be seen that the accumulative error between

the estimated ones and the real ones is given by the following equation.

Error =
1
M

M

∑
i=1
|1− Real

Estimated
| (2.17)

Where M is the number of predictions made in the past. By setting the weight

w to be 0.5, both algorithms EWMA and VEWMA will deliver small accumulative errors.

Specifically, the error by algorithm VEWMA is 9.1%, compared with 12.6% by algorithm

EWMA. Given 3 different independent datasets, Fig. 2.5 implies that with the increase

of w from 0.1 to 0.9, the errors by both algorithms VEWMA and EWMA decrease slightly.

However, when the value of w is greater than 0.9, the errors by both algorithms VEWMA

and EWMA increase significantly and can reach upto from 66% to 300%. In order to

obtain better harvesting energy prediction performance, the value of w should be

adjusted, based on the historical harvesting energy profiles.

2.6.3 Performance Evaluation of Centralized and Distributed Algorithms

on the Coverage Quality

We then investigate the proposed centralized algorithm Greedy_Heuristic and the

distributed implementation Distributed_Implement, against a variant of an exist-

ing centralized algorithm in [37] CPS_Cover which finds such a connected sensor

cover that maximizes the number of targets covered at each time slot. The number

of sensors varies from 100 to 500, and the number of targets |O| is set as 25 and 50,

respectively.

Fig. 2.6(a) clearly shows that in terms of the coverage quality function SQR, the

centralized algorithm Greedy_Heuristic significantly outperforms algorithms

Distributed_Implement and CPS_Cover, and algorithm CPS_Cover is the worst

among all three mentioned algorithms. The coverage quality of algorithm Greedy_Heuristic

is around 30% higher than that of algorithm Distributed_Implement, regardless

of the number of targets |O| is either 25 or 50. With the growth of network size,
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Figure 2.4: The accuracy performance of prediction algorithms VEWMA and EWMA with
weight w = 0.5.
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Figure 2.5: Accumulative errors of prediction accuracy by algorithms VEWMA and EWMA
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Figure 2.6: Performance of centralized algorithm Greedy_Heuristic and distributed
algorithm Distributed_Implement under different quality measure functions SQR

and LOG.
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this performance gap is still stable. The coverage quality delivered by algorithms

Greedy_Heuristic and Distributed_Implement is at least 100% more than that of

algorithm CPS_Cover. For the coverage quality function LOG, Fig. 2.6(b) exhibits

similar performance behaviors, and the coverage quality delivered by algorithm

Greedy_Heuristic is about 50% higher than that by algorithm Distributed_Implement.

With the increase of network size, it can be also seen from Fig. 2.6 that the coverage

quality delivered by algorithms Greedy_Heuristic and Distributed_Implement

increases accordingly. The coverage quality delivered by both algorithms increase

too when the number of targets increases, while keeping the network size fixed.

2.6.4 Impact of Tuning Rate β on the Performance of Dynamic Framework

We also study the efficiency of the proposed dynamic optimization framework

Adaptive_Framework, where algorithm Greedy_Heuristic is employed as its sub-

routine. We fix the threshold ε at 0.2 and the parameter γ at 0.5 while putting the

tuning rate β as 0.2, 0.5, and 0.8, respectively.
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Figure 2.7: Impact of tuning rate β on the performance of Adaptive_Framework
under different quality measure functions SQR and LOG.

Fig. 2.7 demonstrates that the coverage quality delivered by Adaptive_Framework

is the highest in comparison with the other settings when the tuning rate β = 0.5. For

example, when the number of targets is fixed at 25, for the coverage quality function

SQR in Fig. 2.7(a), the coverage quality delivered by the algorithm when β = 0.5 is

about 5% and 6% higher than that by the algorithm when β = 0.2 and β = 0.8,
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respectively. For the coverage quality function LQG in Fig. 2.7(b), the coverage quality

delivered by the algorithm when β = 0.5 is about 9% and 8% higher than that by it

when β = 0.2 and β = 0.8, respectively.

2.6.5 Impact of Threshold ε on the Performance of Dynamic Framework

We also evaluate the impact of threshold ε on the coverage quality delivered by the

proposed framework Adaptive_Framework, in which the subroutine Greedy_Heuristic

is employed. We set the threshold ε as 0.1, 0.2, and 0.3 while fixing the tuning rate β

at 0.5 and parameter γ at 0.5.
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Figure 2.8: Impact of threshold ε on the performance of Adaptive_Framework under
different quality measure functions SQR and LOG.

Fig. 2.8(a) indicates that for the coverage quality function SQR, the coverage qual-

ity achieved by Adaptive_Framework is the highest compared with those of other

settings when ε = 0.2. Specifically, when the number of targets is fixed at 50, the

coverage quality delivered by the algorithm with ε = 0.2 is about 4% and 5% higher

than those by it with ε = 0.1 and ε = 0.3, respectively. When the number of targets

is fixed at 25, the coverage quality delivered by the algorithm with ε = 0.2 is about

5% higher than that by it with ε = 0.1 or ε = 0.3. Fig. 2.8(b) exhibits the similar

performance behaviors for the coverage quality function LOG, omitted.
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2.6.6 Impact of Parameter γ on the Performance of Dynamic Framework

We finally evaluate the impact of parameter γ on the coverage quality delivered by

the proposed framework Adaptive_Framework, in which the subroutine Greedy_Heuristic

is employed. We set parameter γ as 0.4, 0.6, and 0.8 while fixing the tuning rate β at

0.5 and the threshold ε at 0.2, respectively.
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Figure 2.9: Impact of parameter γ on the performance of Adaptive_Framework under
different quality measure functions SQR and LOG.

Fig. 2.9(a) implies that for the coverage quality function SQR, the coverage quality

delivered by Adaptive_Framework with γ = 0.6 is higher than that by it with γ = 0.4

or γ = 0.8. Specifically, when the number of targets is fixed at 50, the coverage quality

delivered by Adaptive_Framework with γ = 0.6 is about 3.5% higher than that by

it with γ = 0.4 or γ = 0.8. When the number of targets is fixed at 25, the coverage

quality delivered by the algorithm with γ = 0.6 is about 3% higher than that by it

with γ = 0.4 or γ = 0.8. Fig. 2.9(b) exploits the performance behavior curves of

Adaptive_Framework for the coverage quality function LOG. The coverage quality

delivered by it with γ = 0.4 and γ = 0.6 is higher than or at the same level as that by

the algorithm with γ = 0.8.

2.7 Conclusions

In this chapter we studied the quality-aware target coverage problem in a renew-

able sensor network deployed for monitoring a set of targets for a given monitor-
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ing period, where sensors are powered by renewable energy sources and operate in

duty-cycle mode, for which we first introduced a new coverage quality metric that is

a weighted linear combination of two utility sub-modular functions to measure the

coverage quality within two different time scales. We then formulated a novel cov-

erage maximization problem that takes both sensing coverage quality and network

connectivity into consideration. Due to the NP-hardness of the problem, we instead

devised efficient centralized and distributed algorithms, provided that the harvesting

energy prediction of each sensor for the monitoring period is accurate. Otherwise,

we proposed an adaptive framework to deal with energy prediction fluctuations. We

finally evaluated the performance of the proposed algorithms through experimen-

tal simulations. Experimental results demonstrate that the proposed solutions are

promising.



Chapter 3

Data Collection Maximization in

Renewable Sensor Networks via

Time-Slot Scheduling

3.1 Introduction

Wireless sensor network has emerged as a key technology for various applications

such as environmental sensing, structural health monitoring, and area surveillance.

In most applications, hundreds or even thousands of sensors normally are dispersed

over the monitoring area, and these sensor nodes self-organize into a wireless net-

work, in which each sensor node periodically reports its sensed data to the sink(s).

Thus, how to efficiently collect the sensed data from scattered sensor nodes is one of

the most critical challenges.

The conventional sensor network architectures are based on the assumption that

the network is dense, so that the sensing data generated by sensors is transmitted

to the sink(s) through multi-hop relays for further processing. As a consequence, in

most cases the sink(s) are assumed to be static, and mobility is not considered as

an option. Moreover, the sensor nodes near to the sink(s) usually bear dispropor-

tionate amounts of traffic and deplete their energy much faster than others. Thus,

in case of failure or malfunctioning of sensors around the sink(s), network connec-

tivity and coverage may not be guaranteed. To mitigate this uneven energy con-

sumption among sensor nodes, the concept of mobile sinks has been exploited, and

47
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extensive studies have shown that mobile sinks can significantly improve various net-

work performance including network lifetime, connectivity, data delivery reliability,

throughput, etc [6, 52, 53, 67, 82, 98, 106, 108, 109]. Most of these studies focused

on the network lifetime maximization when performing data gathering, and the pro-

posed routing algorithms are not applicable for renewable sensor networks due to

the fact that the network can virtually operate perpetually as long as the sensors are

recharged with sufficient harvested energy. That is, the network lifetime in renewable

sensor networks is no longer a major optimization objective, which creates a shift in

research focus from energy efficient to energy neutral approaches [44]. In contrast,

little attention has been paid to data collection in renewable sensor networks with

mobile sinks.

In this chapter, we consider data collection in a renewable sensor network with

a path-constrained mobile sink, where will employ a mobile sink (e.g., a vehicle)

to periodically travel along the pre-defined path at a constant speed to collect data

from its one-hop sensors. Such an application can be a highway traffic surveillance,

where sensors are deployed along both sides of a highway for traffic monitoring to

get traffic related information such as the number of vehicles, types of vehicles, and

individual vehicle speeds, which can later be used for road usage and maintenance,

and driver behavior analysis. Another potential application scenario is the ecosystem

monitoring in a forest, e.g., such a network can be deployed for monitoring exotic

plant growths and/or endangered animals (e.g., giant panda) existence and behavior

observations, where humans or vehicles can only access the limited roads rather

than everywhere in the forest. Also, a vehicle can receive sensing data from a sensor

if the vehicle is within the transmission range of the sensor. The sensors that can

communicate with the vehicle usually serve as gateways where the other sensors will

forward their sensing data to them through multi-hop relays. There are many other

applications that are also fitted in this application scenarios such as oil/gas/water

pipeline monitoring [42], structural health monitoring for bridges [47], etc.

Specifically, the following issues must be addressed: (1) Due to the time-varying

characteristics of energy renewable sources, the energy replenishment rate of each

sensor is unknown in advance, the sensor thus must have its time-varying energy



§3.1 Introduction 49

budget (amount of available energy) for transmitting data to avoid its energy expi-

ration. (2) For a given sensor, it requires using different data transmission rates to

transmit its data when the mobile sink is at different locations, while different trans-

mission rates will consume different amounts of its transmission energy. (3) During

each tour of the mobile sink, it is very likely that multiple sensors can communicate

to the mobile sink at the same time. Simultaneous transmissions of these sensors will

result in a collision at the mobile sink and none of the transmissions will succeed. In

this chapter we will address these issues by scheduling sensors at which time slots

to transmit their data to the mobile sink so that the accumulative volume of the data

collected by the mobile sink per tour is maximized. We achieve this through incor-

porating the time-varying sensor energy budget and employing multi-rate wireless

communications.

Our main contributions in this chapter are as follows. We consider data collec-

tion in a renewable sensor network, using a path-constrained mobile sink. We first

formulate a novel data collection maximization problem by incorporating multi-rate

transmissions and transmission time slot scheduling, and show that the NP-hardness

of the problem. We then devise an offline algorithm with a provable approximation

ratio for the problem, assuming that the global knowledge of the network and sensor

profiles (their locations and available energy) are given. We also extend the proposed

algorithm by minor modifications to solve a generalized case of the problem where

the harvested energy at each sensor is not given and link communications are unreli-

able. We thirdly develop a fast, scalable online distributed algorithm for the problem

without the global knowledge of the network and sensor profiles, which is more suit-

able for real distributed sensor networks. For a special case of the problem where

each sensor has a fixed transmission power, we propose an exact solution for it. We

finally conduct extensive experiments by simulations to evaluate the performance of

the proposed algorithms. Experimental results demonstrate that the proposed algo-

rithms are very promising and the solutions obtained are fractional of the optimum.

The remainder of the chapter is organized as follows. Section 3.2 reviews related

work. Section 3.3 introduces the system model, notions, problem definition, and

shows the NP-completeness of the problem. Section 3.4 devises an offline approxi-
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mation algorithm with a provable approximation ratio for the problem. Sections 3.5

develops a fast, scalable online distributed algorithm, and Section 3.6 devises an ex-

act solution to the problem when each sensor has only one fixed transmission power.

Section 3.7 evaluates the performance of the proposed algorithms through experi-

mental simulations, and Section 3.8 concludes the chapter.

3.2 Related Work

Most existing solutions in renewable sensor networks assumed that the collected

data is routed to a fixed sink through multi-hop relays [26, 55, 61, 63, 91, 114]. For

example, Liu et al. [61, 63] formulated the problem as a lexicographic maximin rate

allocation problem, and provided a centralized algorithm for the problem by solving

an integer linear program. Liang et al. [55] developed a fair rate allocation algorithm

by incorporating temporal-spatial sensing data correlations. Zhang et al. [114] stud-

ied the problem as a utility maximization problem by representing the utility gain at

each sensor node as a concave utility function. They proposed an efficient algorithm

for finding the accumulative sum of utility gains in a tree network. Although the

data collection paradigm based on fixed sinks may be applicable to small to mediate

size networks, it is definitely not suitable for large-scale networks due to long delays

on data delivery by multihop relay, limited communication bandwidth, etc. To miti-

gate the deficiencies brought by fixed sinks, a feasible solution is to introduce mobile

sinks.

Sink mobility in conventional sensor networks has been extensively studied in

the past few year and demonstrated that it can significantly improve various net-

work performance including reducing the energy consumption of sensors, balancing

the workload among the sensors, reducing the data delivery delays, and prolonging

the network lifetimes [10, 16, 23, 29, 52, 56, 92, 105, 107, 109]. Most existing studies

focused on minimizing the energy consumption so as to prolong the network lifetime

since sensors are powered by energy-limited batteries. The use of a path-constrained

mobile sink for data collection in conventional sensor networks has been well stud-

ied. For example, Kansal et al. [45, 84] addressed a network infrastructure based on
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the use of a path-constrained mobile sink for data collection, where a sensor sends

its data to the sink along a minimum number of hops routing path. They proposed

a speed control algorithm to maximize the volume of data collected. Assuming that

the mobile sink moves at a constant speed, Gao et al. [29] addressed the energy min-

imization problem by proposing a novel data collection scheme, where sensors close

to the trajectory of the mobile sink are chosen as ‘subsinks’ and other sensors make

use of different subsinks for their data relays. They formulated the subsink choice

problem as a problem of minimizing the number of hops from each sensor to its

subsink by providing a heuristic solution. They also studied time slot allocations for

subsinks when the mobile sink collect data from the subsinks. Chakrabarti et al. [16]

considered the dependence of transmission setting and packet loss rate of the mo-

bile data collection problem by modeling the process of data collection as an M/D/1

queue. They then proposed an algorithm that ensures adequate data collection and

minimizes the energy consumption. Liang et al. [56] considered another data col-

lection problem by assuming that the subsinks (the gateways) are given in advance.

They devised several approximation algorithms for the problem, by formulating the

problem as a minimum cost capacitated forest problem that finds a minimum cost

capacitated forest consisting of routing trees rooted at gateways and spanning all

sensors. Unlike the mentioned work in conventional sensor networks that focused

on energy conservation to prolong the network lifetime, maximizing network life-

time is no longer a main issue for renewable sensor networks as the sensors can be

continuously recharged by renewable energies. Thus, in principle, such networks can

be operational perpetually. Unfortunately, very little attention has been paid to data

collection in renewable sensor networks, by using mobile sinks.

3.3 Data Collection Maximization Problem

We consider a renewable sensor network G = (V ∪ {s}, E) where V is a set of n

stationary sensors that are densely deployed along a pre-defined path, and a mobile

sink s periodically travels along the path at a constant speed rs without stops to

collect data from one-hop sensors. Each sensor is powered by renewable energy
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(e.g., solar energy) and has stored enough sensing data for collection. There is a

link in E between a sensor v ∈ V and the mobile sink s when they are within the

transmission range of each other. Assume that the maximum transmission range of

each sensor is R, and the length of the pre-defined path is L. The duration per tour

by the mobile sink is determined by its traveling speed rs, which is referred to as

the data latency. That is, the faster the mobile sink travels, the shorter the duration

per tour is, resulting in a shorter delay on data delivery from its generation to its

collection by the mobile sink.

We here adopt a discrete-time system where the duration per tour is slotted into

equal time slots with each lasting τ time units [57]. Given the mobile sink speed rs,

the number of time slots per tour can be determined, which is T = d L
rs·τ e, where L

is the length of the pre-defined path. We index the T time slots by 1, 2, · · · , T. Let

A(v) represent the set of consecutive time slots in which the data transmitted by

sensor v ∈ V can be collected by the mobile sink. Then, A(v) will be determined by

the maximum transmission range R of v and its distance from the pre-defined path.

Fig. 3.1 uses an example to illustrate this concept. Given two sensors vi and vj, then

A(vi) = {is, is + 1, · · · , ie − 1, ie} and A(vj) = {js, js + 1, · · · , je − 1, je} are the sets of

time slots in which they can transmit their data to the mobile sink, 1 ≤ is ≤ ie ≤ T

and 1 ≤ js ≤ je ≤ T. Notice that if A(vi) ∩ A(vj) 6= ∅, they share some time slots

at which they both can transmit their data to the mobile sink. However, following

wireless communication interference model [96], the mobile sink at any given time

slot can receive the data from one sensor only; otherwise, none of the transmitted

data can be received by the mobile sink due to the channel interference. Thus, we

need to allocate these time slots to the sensors such that each time slot is allocated to

one sensor only with an objective to maximize the amount of data collected by the

mobile sink.

3.3.1 Energy Budget Model

As sensors are powered by renewable energy, the amount of energy harvested by a

sensor at each different time slot is different. This implies that a sensor cannot trans-

mit its data to the mobile sink without any restriction. In principle, a given sensor
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vi

vj

is js ie je

R

... ... ... ... ...

d

1 2 T

The pre−defined path

Figure 3.1: An illustration of time slots covered by sensors vi and vj.

v can transmit its data to the mobile sink in all time slots in A(v) if it has sufficient

energy to support it doing so. However, it may not have enough energy at this mo-

ment to achieve that. We here adopt a similar energy budget model mentioned in

chapter 2.3. Denote by B(v) the battery capacity of each sensor v, and denote by

Pj(v) and REj(v) the amounts of available energy of node v prior to and after tour j,

respectively. Thus, sensor v consumes the amount of energy Pj(v)− REj(v) for trans-

mitting its data to the mobile sink in tour j. Let Qj(v) be the amount of harvested

energy of sensor v between the (j − 1)th tour and the jth tour, Pj(v) thus can be

expressed as min{REj−1(v) + Qj(v), B(v)}, where 0 ≤ Pj(v) ≤ B(v). Furthermore,

to support long-term, continuous monitoring service, we assume that sensors should

not consume more energy than they can collect in order to achieve ‘perpetual’ oper-

ations [44]. Hence, without loss of generality, we refer to Pj(v) as the energy budget of

sensor v at tour j. We also refer to P(v) as the energy budget of sensor v per tour.

3.3.2 Energy Consumption Model

It is known that wireless signals suffer from path loss, fading, shadowing, interfer-

ence and other impairments, and the communication performance is determined by

the received Signal to Noise Ratio (SNR). Hence reliability and efficiency are often

at odds with each other. Reliability can be improved by transmitting packets at the

maximum transmission power. However, this introduces unnecessarily high energy

consumption. Motivated by the fact that popular radio hardware such as CC2500 RF



54Data Collection Maximization in Renewable Sensor Networks via Time-Slot Scheduling

Transceiver [90] not only allows setting multiple transmission power levels, but also

allows setting multiple transmission rates, a novel communication model between

sensors and the mobile sink is adopted [2, 46]. That is, each sensor has multiple

transmission power levels and transmission rate levels. Specifically, for each sensor

vi, a transmission rate out of R = {R1, R2, · · · } pre-defined rate levels needs to be

adopted for transmission. Let P = {P1, P2, · · · } be the set of transmission power lev-

els which sensor vi can select when transmitting. Given a time slot (i.e., the location

of the mobile sink is given), for each transmission power level and rate level, this

‘power-rate’ pair could be adopted by sensor vi at this time slot if the Shannon chan-

nel capacity [81] is larger than the transmission rate. Thus, there may exist multiple

transmission ‘power-rate’ pairs which could be adopted by sensor vi at this time slot.

Sensor vi will adopt one ‘power-rate’ pair by its PHY/MAC layer protocols, which

is out of the focus of our work. In the rest of discussions, we thus assume that the

relevant transmission power Pi,j and transmission rate ri,j are given when sensor vi

transmits data to the mobile sink at time slot j.

3.3.3 Approximation Algorithm

We say an algorithm for a maximization optimization problem is an α-approximation

algorithm if the ratio of the approximate solution to the optimal solution is no less

than α, where α is a constant with 0 < α < 1.

3.3.4 Problem Statement

Given a renewable sensor network G and T time slots per tour in which the mobile

sink travels along with a pre-defined path to collect data from one-hop sensors, the

data collection maximization problem is to maximize the volume of the data collected by

the mobile sink through allocating the T time slots to individual sensors, under the

constraints on both the energy replenishment rate and multi-rate data transmission

rate at each time slot.

Intuitively, each sensor should transmit its data to the mobile sink at all available

time slots to it in order to maximize its share on the collected data, thereby maxi-
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mizing the volume of the data collected from the entire network. However, since the

energy replenishment rate of each sensor is much slower than its energy consumption

rate, each sensor may only make use of some of all available time slots to transmit its

data subject to its energy budget. What followed is which time slots it should choose

for its data transmission. Since the sensor at different time slots will have different

data transmission rates, this results in different amounts of its transmission energy

consumption. Furthermore, it is very likely that multiple sensors sharing the same

time slot will compete with each other for the time slot to transmit their own data, as

sensors in the network are densely deployed. Thus, allocating each shared time slot

to one of the competing sensors so as to maximize the accumulative data volume is

a challenging task.

In other words, the data collection maximization problem in G can be described

as follows. Given T time slots and a pre-defined path, the mobile sink travels along

the path at a given constant speed to collect data from one-hop sensors. Associated

with each sensor vi ∈ V, there are |A(vi)| potentially available time slots for sensor

vi to transfer its data to the mobile sink, where ri,j is the average data transmission

rate of vi if it transmits data at time slot j ∈ A(vi) with the amount of energy con-

sumption Pi,j · τ. We further assume that the number of different transmission rates

of each sensor vi, r′i,1, r′i,2, . . . , r′i,ki
, is given and r′i,x < r′i,y if 1 ≤ x < y ≤ ki. Usually, ki

is a fixed integer. To ensure that the transmitted data can be received by the receiver

successfully, the use of a different transmission rate for data transmission will con-

sume a different amount of power of sensor vi. For the sake of convenience, in the

rest of the chapter we assume that all sensors have the same number of transmission

power levels k, i.e., ki = k for all i with 1 ≤ i ≤ n. Also, it is well known that wireless

communication is unreliable. In this chapter we thus assume that the link reliability

of the link between sensor vi and the mobile sink at time slot j is ρi,j with 0 ≤ ρi,j ≤ 1

and 1 ≤ j ≤ T. The data collection maximization problem in G thus is to allocate

a subset of time slots A′(vi) (⊆ A(vi)) to the sensors such that the volume of data

transmitted from all sensors, ∑vi∈V ∑j∈A′(vi)(ρi,j · ri,j · τ) is maximized, subject to (i)

each time slot is allocated to only one sensor if there are multiple sensors sharing the

time slot; (ii) the total energy consumption of each sensor vi per tour is no more than
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its energy budget P(vi), i.e., ∑j∈A′(vi) Pi,j · τ ≤ P(vi), where τ is the duration of each

time slot and A′(vi) ⊆ A(vi) for all i with 1 ≤ i ≤ n.

3.3.5 NP-Hardness

We show that the data collection maximization problem is NP-hard by the following

theorem.

Theorem 4 The data collection maximization problem in a renewable sensor network is NP-

hard.

Proof We show the claim by a reduction from a well known NP-complete problem

- the generalized assignment problem (GAP), which is defined as follows. Given a

set of bins and a set of items that have a different size and profit for each bin, pack a

maximum profit subset of items into the bins. In other words, let A = {a1, a2, · · · am}

be a set of m items and B = {B1, B2, · · · Bn} a set of bins, where each Bi has a capacity

bi for all i with 1 ≤ i ≤ n. Assigning item aj to bin Bi will consume the amount of

resource bi,j of Bi, and the benefit brought by this assignment is ci,j. The objective

is to allocate the items in A to the bins in B such that the total profit is maximized,

subject to the total amount of resources consumed of each bin Bi being no more than

its capacity bi for all i with 1 ≤ i ≤ n.

We now show that a special case of the data collection maximization problem can

be reduced from the defined GAP problem. The data collection maximization prob-

lem is given as follows: we assume that the maximum transmission range of each

sensor R is large enough to cover the entire tour path, and wireless communication

is reliable, i.e., the link reliability of each link is 1. We proceed with the following

reduction.

Each item in A corresponds a time slot, thus the set of items corresponds to the

set of time slots. Each bin Bi in B corresponds to a sensor vi ∈ V, the capacity bi of Bi

corresponds to the energy budget of sensor vi, P(vi), to perform its data transmission

for a certain number of time slots in A(vi), and Pi,j · τ is the amount of transmission

energy consumed by vi if it sends its data to the mobile sink at time slot aj, i.e., the

amount of its resource consumed. The profit brought by allocating time slot aj to
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sensor vi is ci,j (= ri,j · τ), which is the amount of data transmitted, where ri,j is the

average data transmission rate of vi at time slot aj, which usually is determined by

the Euclidean distance di,j between vi and the mobile sink at time slot aj and the

transmission power adopted by vi. This implies that at different time slots, different

data transmission rates will be adopted, thereby leading to different amounts of

data collected by the mobile sink. Allocating the T time slots to the n sensors such

that the amount of data collected by the mobile sink is maximized is equivalent to

maximizing the profit in the GAP. Hence, the data collection maximization problem

is NP-hard. �

3.4 Offline Approximation Algorithm

Since the data collection maximization problem is NP-hard, in this section we devise

an approximation algorithm with a provable approximation ratio for the problem,

by exploiting the combinatorial property of the problem, provided that the mobile

sink has the global knowledge of the network topology and the profile of each sensor

(e.g., the energy budget of each sensor at the current tour, the location of the sensor,

the starting and ending time slots of the sensor, etc).

For the sake of convenience, in the following we first deal with the data collection

maximization problem under the assumptions that the amount of available energy

at each sensor for the current mobile sink tour is given and all links are reliable.

We then show how to extend the proposed solution with minor modifications to the

problem without the specified assumptions.

3.4.1 Algorithm

Cohen et al. [20] proposed a local search algorithm for the generalized assignment

problem (GAP). We show how to adopt their algorithm to the data collection max-

imization problem by necessary modifications, as we have already shown that the

data collection maximization problem is equivalent to GAP.

The technique they adopted is based on a novel combinatorial translation of any

(exact or approximation) algorithm for the knapsack problem into an approximation
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algorithm for GAP. Thus, any β-approximation algorithm for the knapsack prob-

lem can be transformed into a β
1+β -approximation algorithm for GAP, where β is a

constant with 0 < β < 1. The theoretical foundation of their technique is based a

local-ratio theorem [5]. Specifically, the Cohen et al. [20] algorithm proceeds itera-

tively. It essentially decomposes the profit function into two profit functions: one is

used for the current bin packing; and another is used for the rest of bin packing. The

initial profit matrix is defined as follows.

D(0)
i,j =

 ri,j · τ if time slot j ∈ A(vi)

0 otherwise.
(3.1)

Within iteration l, it packs items in A(vl) into bin Bl , using the profit function

D(l)
i,j , i.e., it packs time slots j ∈ A(vl) to sensor vl , based on the profit entries of row

l in D(l)
i,j , subject to the capacity constraint P(vl) of sensor vl .

Let Sl be the set of time slots allocated to sensor vl by a β-approximation algo-

rithm for the knapsack problem, clearly Sl ⊆ A(vl). Then, the profit function D(l)
i,j is

decomposed into two profit functions D(l+1)
i,j and T(l+1)

i,j as follows.

D(l+1)
i,j =

 D(l)
l,j if time slot j ∈ Sl or i = l

0 otherwise.
(3.2)

and

T(l+1)
i,j = D(l)

i,j − D(l+1)
i,j . (3.3)

The decomposition of the profit function implies that D(l+1)
i,j is identical to D(l)

i,j

with regard to bin Bl . In addition, if time slot j ∈ Sl , then it is allocated in D(l+1)
i,j the

same profit as that in D(l)
i,j for all bins l′ if j ∈ A(vl′). All other entries are zeros. The

new profit function for bin Bl+1, D(l+1)
i,j then is T(l+1)

i,j , i.e.,

D(l+1)
i,j = T(l+1)

i,j . (3.4)

The procedure continues until the last bin Bn is packed. Then, an approximate solu-
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tion to the data collection maximization problem finally is derived. That is, let Sl be

the set of time slots allocated to sensor vl . If l = n, then Sn = Sn; otherwise, the set

of time slots allocated to sensor vl is Sl = Sl \ ∪n
j=l+1Sj for all l with 1 ≤ l ≤ n− 1.

The offline approximation algorithm for the data collection maximization prob-

lem is thus as follows.

Algorithm 5 Offline_Appro

Input: The number of time slots T, the set of sensors V, the energy budget P(vi) and
the set of available time slots A(vi), the transmission rate ri,j and the correspond-

ing energy consumption Pi,j of each sensor vi ∈ V, and the profit matrix D(0)
i,j for

all i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ T.
Output: Allocate T time slots to the n sensors.

1: Sort all sensors in increasing order of the indices of their starting time slots, fol-
lowed by their ending time slots. Let v1, v2, . . . , vn be the sorted sensor sequence;

2: Profit matrix’s initialization: D(1)
i,j ← D(0)

i,j for all i and j with 1 ≤ i ≤ n and
1 ≤ j ≤ T;

3: for l ← 1 to n do
4: /* Assume that A(vl) = {ls, · · · le} */
5: Apply a β-approximation algorithm for a single bin packing (knapsack prob-

lem) to allocate time slots in A(vl) to sensor vl , subject to the capacity of vl ,
P(vl), using the profit function D(l)

i,j , i.e., the entries in row l of the matrix. Let

Sl be the result delivered by the approximation algorithm to sensor vl , where
Sl ⊆ A(vl);
/* Decompose the profit function into two profit functions D(l+1)

i,j and T(l+1)
i,j */

6: D(l+1)
i,j ← T(l+1)

i,j ;
7: end for

/* construct a solution to the time slot allocation */
8: Sn ← Sn;
9: for l ← n− 1 downto 1 do

10: Sl ← Sl \ ∪n
j=l+1Sj;

11: end for
12: return Sl for all l with 1 ≤ l ≤ n.

Initially, we sort the sensors in increasing order of indices of their starting time

slots, (i.e., the index of the first time slot in A(vi) for sensor vi). If there are multiple

sensors with the same starting time slot, then sort them in increasing order of indices

of their ending time slots. In case the indices of these ending time slots are also

identical, the tie between the sensors will be broken arbitrarily. Without loss of

generalization, assume that v1, v2, . . . vn is the sorted sensor sequence starting from
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time slot indexed by 1, and the mobile sink starts its data collection tour from the first

time slot. The detailed offline approximation algorithm Offline_Appro is presented

in Algorithm 5.

3.4.2 Complexity Analysis

Theorem 5 Given a renewable sensor network G = (V ∪ {s}, E) with n = |V|, there is an

approximation algorithm for the data collection maximization problem with an approximation

ratio of 1
2+ε . The time complexity of the proposed approximation algorithm is O(n2).

Proof Cohen et al. [20] have showed that algorithm Offline_Appro is a β
1+β -

approximation algorithm, where β is the approximation ratio of an approximation

algorithm for the single knapsack problem with 0 < β < 1. Obviously, the approx-

imation ratio of the approximation algorithm is β = 1
1+ε [50], where ε is a constant

with 0 < ε < 1, and it takes O(|A(vl)| log 1
ε +

1
ε4 ) = O(tmax) time to find the subset

Sl (⊆ A(vl)), where tmax = max{|A(v)| | v ∈ V}. The updating of profit matrices

D(l)
i,j and T(l)

i,j also takes time. However, it is noticed that there is no need to update

all entries. We only need to update the entries in row l and the related columns

j ∈ Sl , thus, it takes O(|A(vl)|+ ∑j∈Sl
O(n)) = O(|A(vl)|+ O(n · |Sl |)) = O(ntmax)

time. The running time of allocating all time slots into the n sensors therefore is

∑vl∈V O(tmax + ntmax) = O(ntmax + n2tmax) = O(nΓ + n2Γ) = O(n2) since tmax ≤ 2Γ

and Γ = b R
rs·τ c usually is a constant in practice, where R is the maximum transmis-

sion range of sensors and rs is the travelling speed of the mobile sink. The approx-

imation ratio of the approximation algorithm for the data collection maximization

problem thus is β
1+β = 1

2+ε . �

3.4.3 Harvested Energy Estimation and Unreliable Link Reliability

The proposed approximation algorithm, Algorithm 5, is proposed, under the as-

sumptions that the energy budget P(vi) of each sensor vi ∈ V is given and the link

reliability of each link ρi,j between sensor vi and the mobile sink at each time slot j

is reliable (i.e., ρi,j = 1) for all vi ∈ V and all j ∈ A(vi). In reality, the battery energy
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information P(vi) at each sensor vi is not known, and the wireless communication

between a sensor and the mobile sink is error-prone and not always noise free, thus

interferences are not avoidable. Therefore, both harvested energy predictions and

unreliable link reliability must be taken into account when dealing with the design

of real protocols for renewable sensor networks. In this subsection we show how to

extend the proposed algorithm for this general case.

Assume that the mobile sink starts its tour t. We take the predicted energy budget

P̂t(vi) and link reliability ρi,j of each sensor into consideration when the mobile sink

performs its next tour t, i.e., when the mobile sink performs packing time slots in

A(vi) to bin vi with the estimated energy budget constraint P̂t(vi) and the link relia-

bility ρi,j for all j ∈ A(vi), the β-approximation algorithm for the knapsack problem

with reliable link reliability can still be applied to this general setting through a minor

modification. That is, the profit brought by allocating time slot j to sensor vi now is

D(0)
i,j = ρi,j · ri,j · τ, not the original ri,j · τ, when sensor vi consumes the amount of

energy Pi,j to transmit data at time slot j with link reliability ρi,j. The rest is almost

identical to the proposed algorithm, Algorithm 5, omitted.

3.5 Online Distributed Algorithm

In the previous section we provided an offline approximation algorithm with a prov-

able approximation ratio for the data collection maximization problem. However,

the solution obtained is based the assumptions that the global knowledge of the net-

work topology and the profiles of sensors including their physical locations, energy

budgets, starting and ending time slots are available. In reality, there is no way for

the mobile sink to know the profile of each sensor unless it is within the transmis-

sion range of the sensor. Also, even if the mobile sink is able to collect the topological

information of the entire network and the profiles of sensors at its previous tours, us-

ing the piggybacking strategy or linear regression prediction, it then performs time

slot scheduling based on the collected information, the solution obtained however

may not be applicable due to the fact that both the energy harvesting and the link

reliability profiles of some sensors may have experienced drastic changes over the
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period of the mobile sink tour. In this section we will develop a fast, scalable online

distributed algorithm for the problem without the mentioned assumptions. For the

sake of discussion convenience, we first assume that all links are reliable, i.e., the

link reliability of each link is one. We then extend the distributed solution to the

unreliable link case through minor modifications.

3.5.1 Overview of the Distributed Algorithm

The overview of the proposed online distributed algorithm proceeds as follows. The

mobile sink periodically broadcasts a ‘Probe’ message with a ‘Registration’ timer,

announcing its presence once per time interval when it travels along the pre-defined

path, where each time interval consists of Γ = b R
τ·rs
c time slots. The ‘Probe’ message

is broadcast in the beginning of each interval, which will be used to detect whether

the mobile sink and the sensors are within the transmission range of each other.

Each sensor receiving the ‘Probe’ message will send the mobile sink back an ‘Ack’

message which contains its current power level, the indices of its starting and ending

time slots, its location coordinate, its link reliability, etc. The sensor then enters the

waiting status to get the reply from the mobile sink when performing its next action.

Once the ‘Registration’ timer expires, the mobile sink starts scheduling the Γ time

slots to the registered sensors, using a time-slot scheduling algorithm A which will

be detailed later. It finally broadcasts the time-slot allocation results to the registered

sensors. Each registered sensor (in the waiting status) then sets its own scheduling,

i.e., in which time slots it will transmits its data to the mobile sink.

Within the rest of the current time interval, each registered sensor transmits its

data to the mobile sink at its allocated time slots. For the sake of simplicity, we here

assume that the time spent by the mobile sink in probing and time slot scheduling is

negligible in comparison with the time at each time slot for data transmission.

When the mobile sink receives the data from the sensor at the last time slot in

the current time interval, it sends a ‘Finish’ message to all the registered sensors.

The registered sensors then update their own energy profiles after having received

the ‘Finish’ message and wait for their scheduling in the next time interval. This
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procedure continues until there is no response from any sensor to the ‘Probe’ message

sent by the mobile sink in some time interval, which means that the mobile sink

finishes the tour already, as we assumed that the sensors are densely deployed along

the pre-defined path and there is at least one sensor at each time interval. The

detailed online distributed algorithm is given in Algorithm 6 and Algorithm 7.

Algorithm 6 Distributed_Algorithm (the mobile sink)

1: continue← ‘true′;/*the current tour finishes or not*/
2: j← 0; /* the number of time intervals per tour */
3: while continue do
4: j← j + 1; /* The current time interval j*/
5: Mobile sink broadcasts a ‘Probe’ message with a ‘Registration’ timer to one-

hop sensors;
6: if the timer expires then
7: if the mobile sink received ‘Ack’ messages from sensors then
8: Call a time-slot scheduling algorithm, Algorithm A, in the mobile sink to

allocate the time slots in time interval t to the registered sensors, subject
to the power constraint on each registered sensor;

9: The mobile sink broadcasts the scheduled results to sensors in the net-
work;
/*Each registered sensor performs data transmissions in its allocated time-
slots; */

10: The mobile sink broadcasts a ‘Finish’ message to sensors when it finished
the data collection from the last time slot in time interval j;
/* The registered sensors update their energy profiles when they received
the ’Finish’ messages. That is, each registered sensor vi updates its power:
Pj(vi) ← Pj(vi)− ∑j′∈Si

·Pi,j′ · τ, where Si is the set of time slots assigned
to vi by algorithm A in the current time interval j and Si ⊆ A(vi); */

11: else
12: continue← ‘ f alse′; /* finish the tour */
13: end if
14: else
15: Waiting for the replies from one-hop sensors;
16: end if
17: end while

3.5.2 GAP-based Time Slot Scheduling

In the rest we devise a GAP-based time-slot scheduling algorithm as Algorithm A in

algorithm 6. Recall that the starting and ending time slots of sensor vi ∈ V are the

isth and the ieth time slots, denote by [is, ie] the time slot interval in which sensor
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Algorithm 7 Distributed_Algorithm (sensor node vi)

1: At each time slot, sensor node vi ∈ V performs its data collection based on its
duty-cycling;

2: When it receives a ‘Probe’ message from the mobile sink, it responds by sending
back of an ‘Ack’ message that includes its current energy P(vi) and link reliability
in the last tour ρi,j, and waiting for the reply from the mobile sink;

3: When it receives the time-slot allocation information from the mobile sink, set its
time-slot scheduling, and perform data transmission in its allocated time slots;

4: When it receives a ‘Finish’ message from the mobile sink, it updates its energy
budget for next time interval.

vi can transmit its data to the mobile sink. Given the current time interval j, [aj, bj]

where aj and bj are the starting and ending time slots in the current time interval,

then |bj − aj| = b R
rs·τ c. If [is, ie] ∩ [aj, bj] 6= ∅, then sensor vi can transmit its data

to the mobile sink in time interval j within time slot interval [i′s, i′e] = [is, ie] ∩ [aj, bj]

with is ≤ i′s and i′e ≤ ie. Let Pj(vi) be the amount of power of sensor vi in the

beginning of time interval j, then it consumes the amount of energy Pi,j′ · τ when

sensor vi transmits its data in a time slot j′ ∈ [i′s, i′e]. It may transmit its data within

multiple time slots as long as its residual energy enables itself to do so. The mobile

sink schedules the current Γ time slots to these registered sensors in the current time

interval, using the offline approximation algorithm. This GAP-based algorithm is

described in Algorithm 8.

Algorithm 8 GAP-based_Time-slot_Scheduling at time interval j
1: Let aj and bj be the starting and ending indices of time slots in time interval j, let

TSj be the set of sensor nodes responded to the ‘Probe’ request message issued
by the mobile sink;

2: Let vi ∈ TSj and is and ie be the starting and ending indices of time slots of vi in
[aj, bj]. That is, let A′(vi) = {is, is + 1, . . . , ie} ⊆ A(vi) be the subset of time slots
of vi in time interval j;

3: for each vi ∈ TSj do
4: Apply an β-approximation algorithm for bin packing to pack time slots in

A′(vi) to sensor vi with the bin capacity Pj(vi);
5: Let Si be the set of allocated time slots to sensor vi, i.e., Si ⊆ A′(vi) ⊆ A(vi);
6: end for

We then have the following lemma and theorem.

Lemma 2 Given the sensor network G = (V ∪ {s}, E), following the proposed online dis-
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tributed algorithm, Algorithm 6 and Algorithm 7, we claim that each sensor is within at

most two consecutive broadcasting regions (or two consecutive time intervals).

Proof We show the claim by contradiction. Considering Fig. 3.2, assume that a

R R R R
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1

v
2

The mobile sink

s
1

s
2

s
3

h

h
’

w

Figure 3.2: A sensor v1 (or v2) cannot be in three consecutive time intervals.

sensor v1 is within three consecutive ‘Probe’ message broadcasting regions, i.e., when

the mobile sink broadcasts its probing messages at s1, s2, and s3 locations, sensor

v1 is able to receive the message three times. Following this assumption, we have

d(v1, s1) ≤ R, d(v1, s2) ≤ R, and d(v1, s3) ≤ R. We now show that this is impossible

by the following three cases:

Case one: sensor v1 is in the left side of s2, then d(v1, s3) =
√

h2 + (w + R)2 >
√

R2 = R, which contradicts the fact that d(v1, s3) ≤ R.

Case two: sensor v1 is in the right side of s2, the proof is similar to Case one,

omitted.

Case three: sensor v1 (i.e., sensor v2) is just above s2, then d(v2, s1) =
√

h′2 + R2 >
√

R2 = R and d(v2, s3) =
√

h′2 + R2 >
√

R2 = R. This contradicts that v2 is in the

transmission ranges of s1 and s3. �

Theorem 6 Given a renewable sensor network G = (V ∪ {s}, E) with |V| = n, there is an

online distributed algorithm for the data collection maximization problem in G, which takes

O(n) time and O(n) messages.
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Proof Following Lemma 2, we notice that each sensor can receive the probing mes-

sage and the finish message from the mobile sink at most twice per tour, and these

messages are issued in two consecutive time intervals. Thus, the total number of

probing and finish messages and the time slot allocation messages received by each

sensor are four, respectively per tour of the mobile sink, while the number of ac-

knowledgement messages by each sensor is two as well. Thus, the total number of

messages transmitted per tour is O(∑v∈V dv) = O(n) as each sensor v has O(dv) =

O(1) messages to be received and/or sent out. Clearly, the time for time-slot schedul-

ing by the mobile sink in each interval j is ∑
Nj
l=1 O(tmax log tmax) = O(Nj · tmax log tmax)

as sorting by the mobile sink for bin packing at each sensor in this interval takes

O(tmax log tmax) time, and the rest operations takes constant time, where Nj is the

number of registered sensors in interval j and tmax = maxv∈V{|A(v)|}. Thus, the

time complexity of the online distributed algorithm is proportional to the number

of time intervals per tour. As we assume that sensors are densely deployed, this

implies that there is at least one sensor responded to each probing request in the

beginning of each time interval, while each sensor is included in at most two con-

secutive time intervals by Lemma 2. Assume that there are K intervals of each tour,

then ∑K
j=1 Nj ≤ 2n. Thus, the time complexity of the online distributed algorithm is

∑K
j=1 O(Nj · tmax log tmax) = O(ntmax log tmax) = O(nΓ log Γ) = O(n) as tmax ≤ 2Γ and

Γ = b R
rs·τ c usually is a constant in practice, where R is the maximum transmission

range of sensors and rs is the travelling speed of the mobile sink. �

3.5.3 Unreliable Wireless Communication

The proposed online distributed algorithm is built upon the assumption that com-

munications between sensors and the mobile sink are reliable. We now remove this

assumption by dealing with a general case where wireless communications are not

reliable, for which we will adopt the similar strategy as we did for the offline ap-

proximation algorithm. That is, within each time interval, when the mobile sink

broadcasts a ‘Probe’ message, a responding sensor vi receiving the ‘Probe’ message

will respond by sending an ‘Ack’ message back to the mobile sink. The Ack message
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contains not only the current harvested energy P(vi) of vi but also its link reliability

ρi,j′ in the previous tour for each time slot j′ ∈ A(vi). The mobile sink then proceeds

a time-slot scheduling in this time interval, based on sensor energy budget and the

estimation of link reliability. In terms of time slot allocation to a responded sensor,

the energy consumption of the sensor by transmitting its data at any given time slot

should incorporate its re-transmission energy consumptions (the link reliability). The

rest operations are identical to the case for the perfect channel condition, omitted.

3.6 A Special Data Collection Maximization Problem

In this section we deal with a special case of the data collection maximization prob-

lem where each sensor vi ∈ V has only one fixed transmission power level with

power P′i . For this special case, we devise a fast, scalable online distributed algo-

rithm for the problem as follows.

We reduce this special data collection maximization problem to the maximum

weight matching problem in another auxiliary, bipartite graph G = (X ∪ Y, EXY),

where X is the set of sensors which acknowledged the probing message by the mobile

sink in the beginning of time interval j, Y is the set of Γ time slots to be allocated to the

registered sensors in X. There is an edge between a sensor node vi that corresponds

to a node xi ∈ X and a time slot node yj ∈ Y if yj ∈ [i′s, i′e], i.e., yj is a time slot in

interval [i′s, i′e]. There are mi = |i′s − i′e|+ 1 edges incident to node xi in G. The weight

associated with edge (xi, yj) ∈ EXY is the average amount of data received by the

mobile sink from sensor vi at time slot yj, D(0)
i,j = ri,j · ρi,j · τ, where the average data

transmission rate ri,j of sensor vi at time slot yj is determined by the distance between

sensor vi and the mobile sink at time slot yj. Our objective thus is to maximize the

data collected by the mobile sink in the current time interval through the time slot

allocation. In terms of time slot allocation, we notice that each registered sensor vi in

the current time interval can make use of upto ni = |A(vi)| time slots to transmit its

data. Meanwhile, it is very likely that there are multiple sensors to compete with each

other for each shared time slot to transmit their own data. The challenge thus is how

to allocate these time slots to the registered sensors such that the sum of amounts of
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data transmitted is maximized. In the following we propose a solution to this special

data collection maximization problem by reducing it to a maximum weight matching

problem in another bipartite graph G′ = ({x(k)i | xi ∈ X, 1 ≤ k ≤ n′i} ∪ Y, E′), where

G′ is derived from the bipartite graph G as follows.

For each node xi ∈ X in G, there are n′i corresponding node copies, x(1)i , x(2)i , . . . , x(n
′
i)

i

in G′, where n′i = min{b R
rs·τ c, |i

′
s − i′e| + 1, bP(vi)/(P′i · τ)c}, where P′i is the fixed

transmission power of sensor vi, and P′i · τ is the amount of energy needed by sensor

vi to transmit a message in a time slot. For each an edge (xi, yj) ∈ EXY in G, there

are n′i corresponding edge copies (x(1)i , yj), (x(2)i , yj), . . . , (x(n
′
i)

i , yj) in E′, and each of

them has a weight D(0)
i,j . Then, finding a solution of allocating the Γ time slots to the

registered sensors such that the amount of data collected by the mobile sink in this

time interval is maximized is equivalent to finding a maximum weight matching in

G′ such that the weighted sum of matched edges is maximized.

Let M be such a maximum weight matching in G′. Then, M corresponds to a

time-slot allocation. That is, each edge (x(k)i , yj) in M implies that time slot yj is

allocated to sensor vi, and sensor vi will successfully transmit its data with the data

transmission rate ri,j to the mobile sink. We refer to this online distributed algorithm

as Online_MaxMatch, and have the following theorem.

Theorem 7 Given a renewable unreliable sensor network G = (V ∪ {s}, E) with |V| = n,

there is an online maximum weight matching-based distributed algorithm for a special data

collection maximization problem in G where there is only one fixed transmission power for

each sensor. The proposed distributed algorithm takes O(n1.5) time and O(n) messages.

Proof The analysis of time complexity and message complexity of the proposed

online distributed algorithm are almost identical to the ones in Theorem 6. The

rest will focus on the analysis of time complexity of the operations in each time

interval. Let Nj be the number of registered sensors in time interval j. Then, the

bipartite graph G′ contains O(Nj · tmax + Γ) nodes and O((Nj · tmax) · Γ) edges, while

it takes O(
√
|V| · |E|) time to find a maximum weight matching in a bipartite graph

G = (V, E) [71]. Thus, it takes O(N1.5
j · Γ2.5) = O(N1.5

j ) time in G′ to find the max-

imum weight matching M, since tmax ≤ 2Γ and Γ = b R
rs·τ c usually is a constant in
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practice, where R is the maximum transmission range of sensors and rs is the trav-

elling speed of the mobile sink. Notice that this maximum weight matching-based

time-slot scheduling algorithm is performed by the mobile sink. Assuming that there

are K intervals, following Lemma 2, each sensor appears at most twice in two con-

secutive time intervals, thus, ∑K
j=1 Nj ≤ 2n. The total amount of time spent for find-

ing maximum weight matchings in all intervals therefore is ∑K
j=1 O(N1.5

j ) = O(n1.5).

Considering the fact that Nj usually is bounded by a constant in practice, then the

proposed online distributed algorithm takes only O(n) time, and the message com-

plexity is still O(n). �

Notice that if the global knowledge of the entire network and the residual energy

and location profiles of all sensors are given, an offline algorithm for the special data

collection maximization problem based on the maximum weight matching can also

be obtained, and delivers an exact solution in polynomial time. We refer to this

offline algorithm as algorithm Offline_MaxMatch.

3.7 Performance Study

In this section we first evaluate the accuracy of the energy prediction model. We then

study the performance of the proposed algorithms through experimental simulation.

We finally investigate the impact of parameters: the network size n, the mobile sink

speed rs, and the duration τ of each time slot on the performance of proposed algo-

rithms.

3.7.1 Experimental Environment Setting

We consider a renewable sensor network consisting of 100 to 400 sensor nodes ran-

domly deployed along two sides of a pre-defined path, and a mobile sink s travels

along the path at constant speed rs. We further assume that the length of the pre-

defined path is 10, 000m and the path is a straight line, and the maximum distance

between the location of any sensor and the path is 180m. Each sensor has an identi-

cal maximum transmission range of 200 meters and is powered by a 10mm× 10mm
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square solar panel with the battery capacity of 10, 000Joules. The solar power har-

vesting profile is built upon real solar radiation measurements [63], in which the total

amount of energy collected from a 37mm× 37mm solar panel over a 48-hour period is

655.15mWh in a sunny day and 313.70mWh in a partly cloudy day, respectively. We

here adopt a 4-pairwise communication parameters setting where its transmission

and corresponding distance parameters are listed in Table 3.1. In the default setting

Table 3.1: List of experimental setting parameters
Parameter Values
Number of sensors 100 – 400
Sensor transmission rates ri,j 250 Kbps between 0m–20m at 170 mW
and 19.2 Kbps between 20m–50m at 220 mW
energy consumption Pi,j 9.6 Kbps between 50m–120m at 300 mW

4.8 Kbps between 120m–200m at 330 mW
Link reliability ρi,j [0, 1]
Sensor energy capacity B(v) 10,000 Joules
Sink travelling speed rs 5m/s – 30m/s
Duration of time slot τ 1 sec.–10 sec.

the duration of each time slot τ is 1 second. Each value in figures is the mean of

the results obtained by applying each mentioned algorithm to 50 different network

topologies of the same network size. Since the deviations of the 50 replication results

are minor, for the sake of clarity, we do not provide error bars to indicate their stan-

dard deviations. We will adopt an existing offline algorithm C_Schedule [78] for a

similar data gathering problem as the benchmark, which proceeds to allocate time

slots iteratively, starting from time slot 1 and ending at time slot T. Within iteration

j, time slot j will be allocated to the sensor with the maximum amount of its data to

be transmitted.

3.7.2 Performance Evaluation of Different Algorithms

We then evaluate the performance of algorithms Offline_Appro and Online_Appro

by varying the network size n from 100 to 400 and setting the mobile sink speed

rs at 5m/s, and 10m/s, while the duration of time slot τ is fixed at 1s, 4s, and 8s,

respectively.
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Fig. 3.3 demonstrates that algorithm Offline_Appro always outperforms algo-

rithm Online_Appro slightly. However, they both outperform the benchmark algo-

rithm C_Schedule significantly. For example, when rs = 5m/s and τ = 1s, the

network throughput of algorithm Online_Appro is no less than 93% of that of algo-

rithm Offline_Appro, while their throughput are no less than from 115% to 400%

that of algorithm C_Schedule. The reason behind is that algorithm Online_Appro

only has the local, rather global knowledge of the entire network. It can be also no-

ticed that when the network size is fixed, the longer duration of time slot and the

higher mobile sink speed will lead to a lower network throughput of each mentioned

algorithm. In other words, to maximize the network throughput, a shorter duration

of time slot should be chosen when the mobile sink travels at a faster speed.
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Figure 3.3: Network throughput delivered by algorithms Offline_Appro,
Online_Appro, and C_Schedule through varying the sink speed rs and the network

size n when all links are reliable.

Fig. 3.4 shows that the network throughput of the three mentioned algorithms
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Offline_Appro, Online_Appro and C_Schedule drop down significantly when vary-

ing the link reliability between 0 and 1 randomly in comparison with their counter-

parts in the link reliability case in Fig. 3.3.
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Figure 3.4: Network throughput delivered by algorithms Offline_Appro,
Online_Appro, and C_Schedule through varying the sink speed rs and the network

size n when the link reliability is between 0 and 1.

3.7.3 Performance Evaluation of Different Algorithms for the Special Data

Collection Maximization Problem

When the transmission power of each sensor is fixed at 300mW, we now inves-

tigate both the performance of algorithms Offline_MaxMatch, Online_MaxMatch,

Offline_Appro, and Online_Appro against algorithm C_Schedule and the impacts

of the network size n and the mobile sink speed rs on the performance, by varying n

from 100 to 400 and setting rs at 5m/s, 10m/s, and 30m/s while the duration of time

slot τ is fixed at 1s.
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When the mobile sink speed is fixed at 5m/s, Fig. 3.5(a) clearly indicates that al-

gorithm Offline_MaxMatch outperforms the other four algorithms, and algorithm

C_Schedule is the worst one among them. Moreover, it is observed that algo-

rithm Online_MaxMatch is inferior to algorithm Offline_MaxMatch, as algorithm

Online_MaxMatch only has the local knowledge of the network. However, the per-

formance gap between them is only marginal. It is also noticed that algorithm

Online_MaxMatch outperforms the other three algorithms, and the performance

gaps among them increase with the growth of network size. Specifically, when

n = 100, the performance of algorithms Online_MaxMatch, Offline_Appro, and

Online_Appro are almost the same. When n = 400, the performance of algorithm

Online_MaxMatch is 18% and 23% better than that of algorithms Offline_Appro and

Online_Appro. When the mobile sink speed is fixed at 10m/s or 30m/s respectively,
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Figure 3.5: Network throughput delivered by different algorithms for a special case
through varying the mobile sink speed rs and the network size n when all links are

reliable.
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Fig. 3.5(b) and 3.5(c) exhibit the similar performance behaviors as Fig. 3.5(a), omit-

ted. In summary, Fig. 3.5 implies that when the network size is fixed, the network

throughput delivered by each mentioned algorithm decreases, with the increase of

the mobile sink speed. Specifically, the network throughput delivered by algorithm

Offline_MaxMatch when rs = 5m/s is at least 105% and 617% higher than that by

itself when rs = 10m/s and 30m/s, respectively. This is because when the mobile

sink travels at a faster speed, the duration of the mobile sink travels the entire path

will be shortened, while the data transmission rate is still keeping unchanged, thus,

the amount of uploading data from sensors will be reduced. Although a faster speed

leads to a shorter delay on data delivery, it will result in a less amount of data col-

lected per tour.

We finally study the impact of the duration of time slot τ and the network size n

on the performance of algorithms Online_MaxMatch and Online_Appro, by varying

n from 100 to 400 and setting τ as 1s, 2s, 4s, 6s, 8s, and 10s respectively, while

keeping the mobile sink speed rs at 5m/s. Fig. 3.6(a) and 3.6(b) illustrate that for both
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Figure 3.6: Impact of network size n and the time slot duration τ on the network
throughput delivered by algorithms Online_MaxMatch and Online_Approwhen all

links are reliable.

algorithms Online_MaxMatch and Online_Appro, the network throughput decreases

with the increase of the duration of each time slot. Their performance gap becomes

larger and larger, with the growth of the network size. Specifically, in Fig. 3.6(a),

the network throughput of algorithm Online_MaxMatch with τ = 1s is at least 3%,

9%, 21%, 28%, and 61% higher than that by itself when τ = 2s, 4s, 6s, 8s, and 10s,
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respectively. In Fig. 3.6(b), the network throughput of algorithm Online_Appro with

τ = 1s is at least 2%, 7%, 18%, 24% and 56% higher than that by itself when τ = 2s,

4s, 6s, 8s, and 10s, respectively. The reason behind is that with a shorter time slot,

the registered sensors can utilize their energy more efficiently.

3.8 Conclusions

In this chapter we studied data collection in a renewable sensor network using a

mobile sink that travels along a pre-defined path, by adopting multi-rate data trans-

mission mechanisms and time-slot scheduling. We first formulated a novel data

collection maximization problem and showed its NP-hardness. We then provided an

offline approximation algorithm with a provable approximation ratio, by exploiting

the combinatorial property of the problem, assuming that the global knowledge of

the network is available. We also proposed a fast, scalable online distributed algo-

rithm for realistic sensor networks without the global knowledge assumption. In

addition, for a special case of the data collection maximization problem where each

sensor has only one fixed transmission power, we proposed an exact solution to the

problem. Finally, we conducted experiments by simulations to evaluate the perfor-

mance of the proposed algorithms. Experimental results demonstrate that the pro-

posed algorithms are efficient and scalable, and the solutions delivered are fractional

of the optimum.
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Chapter 4

Data Quality Maximization in

Renewable Sensor Networks with

A Mobile Sink

4.1 Introduction

Extensive studies on mobile data collection in traditional sensor networks have been

conducted, which have demonstrated that mobile sinks can significantly improve

various aspects of network performance including network lifetime, data delivery

reliability, throughput, etc [52, 82, 106, 109]. Most of these existing studies focused

on the trade-off between maximizing data quantity and prolonging network lifetime.

However, network lifetime maximization is no longer a main issue in renewable

sensor networks as sensors can get recharged by renewable energy. This creates a

shift in research focus from network lifetime maximization to network utility (e.g.,

the quality of the collected data) maximization.

Among a variety of different mobile data gathering schemes, a typical scheme is

data gathering via a sink with controlled mobility [69, 73]. In particular, a set of loca-

tions in the sensing field is chosen as sojourn locations. The mobile sink periodically

carries out a data gathering tour by visiting sojourn locations such that it can traverse

the transmission range of sensors in the network. When the mobile sink arrives at an

sojourn location, it would collect data from sensors in the neighborhood. Thanks to

the direct data transmissions between sensors and the mobile sink, uniform energy

consumption can be achieved as each sensor no longer relays data for other sensors.

77
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Since the mobile sink’s move speed is much slower than that of electromagnetic or

acoustic waves, data collection may suffer much larger latency.

In this chapter we consider data collection in a renewable sensor network via a

sink with controlled mobility, by formulating a novel constrained optimization prob-

lem consisting of finding an optimal close trajectory for the mobile sink and schedul-

ing the sojourn time at each sojourn location such that the network data quality (the

quality of data collected) is maximized, subject to a specified tolerant delay constraint.

Specifically, we assume that the mobile sink traverses along a close trajectory and

stops at each sojourn location in the trajectory for a certain amount of time to collect

data from one-hop sensors, and each sensor that has only sufficient energy during

the sojourn time can perform its data transmission. The mobile sink finally will

return to its starting point within the given time bound.

The main contribution of this chapter are as follows. We first formulate this prob-

lem as a data quality maximization problem consisting of finding a trajectory and

sojourn time scheduling. Since this is a NP-hard problem, we then devise a heuris-

tic algorithm which exhibits low computational complexity and high scalability. A

distributed implementation of the proposed algorithm is also developed. Finally, we

conduct experimental simulations to evaluate the performance of the proposed algo-

rithms. Experimental results demonstrate that the proposed algorithms are efficient

in terms of the quality of data collected.

The rest of the chapter is organized as follows. Section 4.2 provides the litera-

ture survey on the sink with controlled mobility for network lifetime prolongation

in traditional sensor network. Section 4.3 introduces the network model and prob-

lem definition. Sections 4.4 and 4.5 are devoted to devising algorithms for the data

quality maximization problem. Section 4.6 evaluates the performance of the pro-

posed algorithms through experimental simulations, while section 4.7 concludes the

chapter.
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4.2 Related Work

Extensive studies on data gathering in traditional sensor networks have been con-

ducted in the past several years. Via a mobile sink with controlled mobility, the re-

lated work on data gathering in such networks is briefly described as follows. Wang

et al. [98] considered a joint optimization problem of determining the sink movement

and its sojourn time at certain network nodes in a grid network so that the network

lifetime is maximized. They proposed an integer linear programming based solution

for the problem by finding the sojourn time of the mobile sink at each node, assum-

ing that a half of the workload (the number of messages generated and received)

of each node flow along its horizontal and another half flow along its vertical links

towards the current location of the sink. Since the network is a grid network, the

load at each sensor toward the current sink location can be calculated easily. Thus,

they are able to calculate the exact energy consumption of each sensor at each possi-

ble location of the sink. Luo et al. [68] later considered a joint optimization problem

for data gathering by proposing a two-stage scheduling. First, the mobile sink visits

the ‘anchor’ locations one by one and sojourns at each of them for a short sampling

period. During this stage, the sink collects the power consumption of all nodes and

builds the sojourn time profile at each anchor point. The sink then solves an ILP

formula, using the given sojourn time profiles. An anchor point would be dropped

from the visiting list if the sojourn time at it is below a given threshold. Otherwise it

would not be worthwhile to keep such a point as the sojourn time cannot amortize

the overhead on building a routing tree rooted at it. What follows is to solve the ILP

to find the exact sojourn time at each chosen anchor point. Basagni et al. [6] con-

sidered a more realistic model for network lifetime maximization by imposing two

realistic constraints on mobile sinks, the maximum distance at its each movement

and the minimum sojourn time at each sojourn location. To reduce the data loss due

to the sink motion from one location to another, it is assumed that the moving dis-

tance of the sink from its current location to its next location is bounded by a given

value, and the sink sojourns at each chosen location for at least a certain amount of

time. Then the problem is to find a route that maximizes the network lifetime. They
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first formulated the problem into a mixed integer linear program and then proposed

a simple, distributed heuristic by utilizing the routing tree structure. Xing et al. [104]

proposed a rendezvous-based data collection approach that explores the controlled

sink mobility and the capacity of in-network data caching by bounding the total

travel distance of the mobile sink. They developed two approximation algorithms

to minimize the sum of the consumed energy of all involved sensors. Note that the

approximation ratios obtained are based on a simplified assumption of data gather-

ing. That is, all data at each relay node is aggregated into a single packet prior to its

transmission. Guney et al. [34] formulated the sink trajectory problem as a joint op-

timization problem that aims to identify the optimal sink locations and information

flow path between sensors and sinks. They solved the problem through formulat-

ing it as a mixed integer linear program and developed several heuristics under the

assumption that the mobile sink traverses all potential locations. Yun and Xia [113]

considered the network lifetime maximization problem using a mobile sink for the

underlying applications that tolerate delayed information delivery to the sink. With

the assumption that each sensor is not required to send its data immediately when

they are generated, instead the data can be stored at the sensor temporarily and be

transmitted when the mobile sink is at the most favorable location to achieve the

maximum network lifetime. They formulated the problem as an optimization prob-

lem subject to the delay bound constraint, and proposed a flow-based optimization

framework for it. Xu et al. [106] addressed a delay-tolerant data collection problem

for event-detection with a guaranteed collection rate. They formulated the problem

as a sensor selection problem and solved the problem by incorporating the spatial-

temporal correlation of the event so that the network lifetime can be significantly

extended. Liang et al. [53, 54] incorporated the travel distance of the sink into the

problem formulation and proposed heuristics to find a trajectory for a mobile sink so

that the network lifetime can be maximized. Liang et al. [52] further extended their

work on a single mobile sink to multiple sinks. Xu et al. [109] considered a delay-

tolerant data collection problem subject to the tolerant delay constraint by proposing

a heuristic so that the network lifetime can be significantly prolonged.
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4.3 Data Quality Maximization Problem

We consider a renewable sensor network G = (V ∪ S, E) deployed for monitoring

purpose with a set V of stationary sensor nodes, a set E of links, a mobile sink, and

a set S of potential sojourn locations at which the mobile sink can sojourn which

usually is determined in advance. For the sake of simplicity, we assume that all

sensors are homogeneous, where our solutions can be extended to heterogeneous

scenario easily. Each sensor v ∈ V is powered by a rechargeable battery whose

energy is harvested from its surrounding environment, and senses its vicinity with

a data generation rate gv. Given a tolerant data delivery delay T, the sensing data is

stored at the sensor temporarily and will be uploaded to the mobile sink with a data

transmission rate rv if possible. Assuming that the maximum transmission range of

each sensor and the mobile sink is R, there is a link li,j ∈ E between a sensor vi ∈ V

and the mobile sink located at sj ∈ S if the sink is within the maximum transmission

range of vi, i.e., the Euclidean distance |li,j| between vi and sj is no greater than R.

Denote by N(sj) the neighboring set of sensors within the maximum transmission

range of sj.

We consider a communication model similar as the one used in [119]. Specially,

the mobile sink is equipped with multiple antennas and has unlimited energy supply

in comparison with energy-constrained sensor nodes. Being a receiver with multiple

receiving antennas, the mobile sink makes it possible for multiple sensors to con-

currently transmit their data to it. By processing the received signals from different

sensors with filtering based on the channel state information, the mobile sink can

successfully separate and decode the information from different sensors.

We assume that the set of potential sojourn locations S of the mobile sink is

known a priori. There are several ways to decide potential sojourn locations. One

way is to use the positions of a subset of sensors as sojourn locations [104]. An

example of this data gathering scenario is illustrated in Fig. 4.1, where the potential

sojourn locations are known in advance and the mobile sink starts its tour from a

fixed depot and sequentially chooses sojourn location to visit for data collection. The

mobile sink will return to the depot within a given tolerant data delivery delay. Note
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that a sojourn location can be visited for many times. The tolerant delay imposed is

based on two different reasons. First, applications often require data to be delivered

within a certain amount time deadline. Second, the mobile sink must return to the

depot to be serviced (e.g., petrol replenishment or energy recharging) [104].

sensor depot

collection tourmobile sink

sojourn location

Figure 4.1: An example of the data gathering scheme.

4.3.1 Energy Budget and Consumption Models

We here adopt a similar energy budget model mentioned in chapter 2.3. Denote by

Bv the energy storage capacity and Pv(t) the amount of residual energy at time t of

each sensor v ∈ V. Then, Pv(t) can be estimated as follows:

Pv(t) = min{Pv(t′) +
∫ t

t′
Hv(t)dt, Bv} (4.1)

where t′ is the latest time when sensor v finished a data uploading to the mobile

sink, 0 ≤ t′ ≤ t, and Hv(t) represents the pattern of energy acquisition of sensor v.

For the sake of discussion, we use Pv to represent the residual energy of sensor v at

the moment in the rest of the chapter.

We assume that each sensor node only consumes energy on wireless communi-

cation, while its other energy consumptions including sensing and computation are

ignored. We also adopt a similar energy consumption model mentioned in chap-

ter 3.3. For each link li,j, let ei,j ∝ |li,j|γ be the energy consumption per second of
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node vi by transmitting data to the mobile sink located at sj, which is determined

by the distance. The exponent γ is the path loss factor, which is typically a constant

between 2 and 4.

Given a sojourn location sj ∈ S of the mobile sink, if it is within the maximum

transmission range of a sensor vi ∈ V, the survival time ti,j of a sensor vi can be

determined by its residual energy Pvi and the amount of stored data Dvi , which is

calculated as follows.

ti,j = min{ Pvi

ei,j · rvi

,
Dvi

rvi − gvi

} (4.2)

where
Pvi

ei,j·rvi
represents the time allowed for data transmission prior to its energy

depletion, and
Dvi

rvi−gvi
represents the time required to transfer all the stored data.

4.3.2 Data Quality

To measure the contribution of each sensor node v ∈ V to the data quality of the

entire network in a time period of T, a utility function u(v) is used to represent such

a contribution, where u(v) is a monotonic increasing function, whose marginal utility

decreases with the growth of its cumulative data collection during of the period of T.

When u(v) = 1, all sensed data by sensor v during the period of T has been collected

by the mobile sink; otherwise, we assume that at any time point during the period,

the data generated by node v is treated equally in terms of its contribution to the

data quality of the entire network. In other words, we do not distinguish whether

the sensing data is obtained at time point ta or at time point tb with ta 6= tb, and

treat them equally. We then define the utility of sensor v in a tour of the mobile sink

as u(v) = f (xv) where xv is the ratio of the data collected to the data generated by

sensor v, and the function f (x) is a monotonic increasing function. If there is not

any data sent from a sensor v to the mobile sink during the time period of T, then

u(v) = 0. Clearly, 0 ≤ u(v) ≤ 1. Thus, maximizing the data quality of network-wide

(or network data quality) is equivalent to maximizing the sum of utilities of all nodes,

∑v∈V u(v).
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4.3.3 Problem Statement

Given a renewable sensor network G(V ∪ S, E) with a sensor set V and a potential

sojourn location set S for a mobile sink, and a tolerant data delivery delay T, the data

quality maximization problem in G is to find an optimal close trajectory for the mobile

sink that consists of sojourn locations in S and time scheduling at each sojourn loca-

tion such that the network data quality is maximized, subject to the tolerant delay T,

assuming that the mobile sink only collects data from one-hop sensor nodes, where

the tolerant delay T is the total amount of time spent by the mobile sink per tour.

Notice that this one-hop data transmission can be easily extended to multi-hop data

transmission. In this latter case, we can treat one-hop sensors as gateways that all

other sensors’ data will be relayed to them. In other words, let S′ = 〈s0, s1, s2, · · · , sm〉

be the sequence of sojourn locations in the trajectory of the mobile sink, where for

all sj ∈ S′ t′j is the travel time from sj−1 to sj, tj is the sojourn time at location sj,

1 ≤ j ≤ m, and s0 is the depot of the mobile sink. The utility of sensor v ∈ V in

a tour of the mobile sink is u(v) = ∑m
j=1 δj(v) · uj(v), where δj(v) is either 1 or 0,

depending on whether v sends its data to the mobile sink when the mobile sink is

located at sj, and uj(v) is the utility gain of v if it does send its data to the mobile

sink. Specifically, assume that sensor v sent its data to the mobile sink previously

when the mobile sink was located at sj1 , sj2 , . . ., and sjl , respectively. When the sink

is located at sj with sojourn duration of tj, the utility gain uj(v) of v is calculated as

follows.

uj(v) = f (
(∑l

i=1 tji + tj) · rv

T · gv
)− f (

(∑l
i=1 tji) · rv

T · gv
) (4.3)

where tji is the sojourn duration of the mobile sink at location sji with 1 ≤ i ≤ l. The

data quality maximization problem in G therefore is to find a close trajectory for the

mobile sink and the sojourn time for each chosen sojourn location in the trajectory

such that the value of ∑v∈V u(v) is maximized, subject to the time constraint T.

4.3.4 NP-Hardness

Assuming the data quality function f (x) is linear, we then formulate the data quan-

tity maximization problem, a special case of the data quality maximization problem.
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We now show the data quantity maximization problem is NP-hard by the following

theorem.

Theorem 8 The decision version of the data quantity maximization problem in renewable

sensor networks with a mobile sink is NP-hard.

Proof We show the claim by a polynomial reduction from a well known NP-

complete problem – the set cover problem [30], as follows. An instance of the set

cover problem is: given a set of n elements U = {a1, a2, . . . , an} and a family of m

subsets F = {S1, S2, . . . , Sm} with Sj ⊆ U and
⋃m

j=1 Sj = U. Now, given a positive

integer K (K ≤ m), the decision version of the instance is to determine whether there

is a collection C of K sets from F such that
⋃

Si∈C Si = U, where C ⊆ F .

We now reduce this instance to an instance of the data quantity maximization

problem in a renewable sensor network G(V ∪ S, E) with a mobile sink as follows.

Each element ai ∈ U corresponds to a sensor vi ∈ V with initial energy capacity of

cv = 1, assume that the data generation rate of each sensor is 1. Each subset Sj ∈ F

corresponds to a potential sojourn location sj ∈ S, and its elements correspond to the

sensors that are within the transmission range of the mobile sink located at sj, i.e.

N(sj) = Sj if there is no distinction between a sensor vi and its corresponding element

ei ∈ Sj, there is an edge in E between vi and sj. When a location sj ∈ S is chosen as the

sojourn location of the mobile sink, then, all sensor nodes in N(sj) that have not yet

sent their data to the mobile sink will have their initial energy capacity of 1 following

our energy consumption assumption (we ignore the energy consumption in data

sensing). They all will consume the same amount of energy e = 1 by transmitting a

packet from each of them to the mobile sink because they have identical transmission

ranges, assuming that the energy consumption per packet transfer is 1. We further

assume that the energy replenishment rate of each sensor is very slow during the

given time period of T, and the total amount of energy harvested during this period

is no greater than 1
n2 . In other words, during the tolerant delay period of T, each

sensor v ∈ V can send a packet to the mobile sink at most once, since its survival

time is Cv
e = 1

1 = 1. Once its data has been sent to the mobile sink, the accumulative

harvested energy of sensor v is not enough for it to send its other sensing data to
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the mobile sink again. Furthermore, we assume that the time spent on the traveling

by the mobile sink from one sojourn location to another is a small fraction of 1 , e.g.

the time for each movement of the mobile sink is no more than 1
n+1 , thus, the total

amount of time used for the traveling of the mobile sink ζ ≤ n
n+1 ( < 1) is strictly less

than 1.

Having constructed an instance of the data quantity maximization problem in

G with a given tolerant delay T = K + 1, the decision version of the throughput

maximization instance is to decide whether there is a close trajectory for the mobile

sink and sojourn time scheduling such that the data quantity ratio is 1
K (i.e., one

packet from each sensor will be collected), subject to the tolerant delay T. If there

is such a solution to this instance, there is a corresponding solution to the set cover

instance as follows.

It is easy to verify that the found trajectory contains exactly K sojourn locations;

otherwise, the total time spent per tour will be larger than K + 1 > T, since the

sojourn time at each sojourn location is exactly 1. Each sojourn location sj in the

trajectory corresponds to a set in F , and all sensors within the maximum transmis-

sion range of the mobile sink located at sj are the elements in the corresponding set

Sj ∈ F . Given a sojourn location sj, only these sensors within the transmission range

of the mobile sink located at sj that have the initial energy capacities can transmit

their data to the mobile sink, and the volume of data collected by the mobile sink is

equal to the number of such sensors. During the time period of T, it is known that

each sensor has sent exactly one packet to the mobile sink when the mobile sink is

at one of the K sojourn locations, i.e., the corresponding element in U of each sensor

will be in a corresponding set of the sojourn location. This means that the union

of all elements in U will be covered by the K sets. As the amount of time spent on

travelling ζ is less than 1, the amount of time spent by the mobile sink per tour is

K < K + ζ < T. Thus, given the tolerant delay T = K + 1, there is a solution for the

instance of the data quantity maximization problem with the data quantity ratio of
n

(T−1)·n·rg
= 1/K if and only if there is a solution to the instance of the set cover prob-

lem with the cardinality of K. Note that it takes a fraction of unit-time on mobile sink

traveling and we assume that a single packet per time unit will be generated. The to-
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tal volume of data generated by all sensors per tour is (T− 1) · rg · |V| = (T− 1) · 1 · n.

However, it is well known that the set cover problem is NP-complete [30]. Thus, the

data quantity maximization problem is NP-hard. �

To this end, the data quality maximization problem is NP-hard, as the data quan-

tity maximization problem is a special case of this general setting.

4.4 Centralized Heuristic

In this section we deal with the data quality maximization problem by devising a

scalable heuristic. The proposed algorithm proceeds a number of iterations. Within

each iteration a new sojourn location as well as the sojourn time at the location is

added to the constructed trajectory. This procedure continues until the specified

tolerant delay of the trajectory does not hold any more.

4.4.1 Algorithm

Suppose that si is the current location of the mobile sink in the found trajectory so

far, we consider the next sojourn location sj of the mobile sink. Notice that a visited

sojourn location can be revisited multiple times. A location sj ∈ S is a feasible sojourn

location if the time spent on all previous sojourn locations and traveling plus the time

t′j from si to sj, the sojourn time tj at sj, and the time t′j,0 from sj to the depot s0 is no

more than T, i.e., ∑i
l=0(t

′
l + tl) + t′j + tj + t′j,0 ≤ T.

Consider a potential next sojourn location sj. The data collected by the mobile

sink at sj is determined jointly by its sojourn time tj and its neighboring sensors. To

maximize the quality of data collected at each sojourn location, ideally the mobile

sink should move to a location a bit far away from its current location si, thus, all

neighboring sensors of the new location will have enough energy to transmit their

data to the mobile sink and the expected quality of data collected will be maximized

because it is very likely that the sensing data from these sensors has not been col-

lected yet. On the other hand, the travel distance between the current location and

the next sojourn one should not be too far away from each other, otherwise no data

will be collected during the traveling of the mobile sink. To mitigate the data loss
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due to mobile sink traveling, its travel distance should be shortened. Thus, there is

a nontrivial trade-off between the travel distance and the amount of sojourn time at

the next sojourn location when the mobile sink chooses its next sojourn location. In

the following we show how to choose the next sojourn location sj ∈ S.

Recall that N(sj) is the set of sensors that the mobile sink located at sj is within

their transmission ranges and ti,j is the survival time of sensor vi ∈ N(sj) if it sends

its data to the mobile sink. Let vi1 , vi2 , . . . , vi|N(sj)|
be the sensor sequence sorted by

their survival time in decreasing order. Denote by ∆u(sj, vil′
) = f (

(Ti(vil′
)+til ,j)·rvil′

T·gvil′
)−

f (
Ti(vil′

)·rvil′
T·gvil′

) the utility gain of sensor vil′
by sending its data to the mobile sink at

location sj with the time duration of til ,j if til ,j ≤ til′ ,j, where Ti(v) is the accumulative

sojourn time of sensor v prior to the sojourn location sj. Otherwise, ∆u(sj, vil′
) =

f (
(Ti(vil′

)+til′ ,j
)·rvil′

T·gvil′
)− f (

Ti(vil′
)·rvil′

T·gvil′
) if til ,j > til′ ,j. Then, the utility gain u(sj, il) when the

mobile sink at location sj with a sojourn time til ,j is

u(sj, il) =
∑v∈N(sj) ∆u(sj, v)

∆t(sj, il)
, (4.4)

where ∆t(sj, il) = t′j + til ,j + t′j,0 − t′i,0 is the time cost associated with this utility gain,

assuming that the speed of the mobile sink rm is fixed. Define the utility gain se-

quence at location sj with different sojourn times as follows.

u(sj, i1), u(sj, i2), . . . , u(sj, i|N(sj)|). (4.5)

Since we aim to maximize the aggregate utility of all sensors, we can choose a so-

journ time tik ,j for the mobile sink at each sojourn location sj such that the utility

gain u(sj, ik) is maximized, i.e., we identify an index ik of a maximum term in se-

quence (4.5) as the utility gain of the mobile sink at location sj, 1 ≤ k ≤ |N(sj)|

and 1 ≤ j ≤ |S|. If we choose location sj as the next sojourn location of the mobile

sink, the sojourn time of the mobile sink at sj is tj = tik ,j, and the utility gain is

U(sj) = u(sj, ik). Thus, given all feasible sojourn locations, to maximize the network

data quality, a location sj with the maximum value of U(sj) will be chosen as the

next sojourn location of the mobile sink.
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Algorithm 9 Last_Location

Input: A found trajectory S′ in which si is the last sojourn location, sink speed rm
Output: The last sojourn location last_soj_location and its sojourn time last_soj_time

1: max_gain← 0;
2: for each location sj ∈ S do
3: Compute ∆tj;
4: if ∆tj > 0 then
5: Identify the terms whose survival times are no greater than ∆tj

and choose a term with the maximum value from the sequence
u(sj, i1), u(sj, i2), . . . , u(sj, i|N(sj)|);

6: Let ik be the index of the term;
7: tj ← tik ,j; U(sj)← u(sj, ik);
8: if max_gain < U(sj) then
9: last_soj_location← sj; max_gain← U(sj); last_soj_time← tj;

10: end if
11: end if
12: end for
13: return Last location last_soj_location and the sojourn time last_soj_time.

With more and more sojourn locations added to the trajectory, we then reach a

point where no any location in S will be a feasible sojourn location for the trajectory.

Consider a location sj which has Ti + tj + t′j + t′j,0 > T while Ti + t′j + t′j,0 < T, where

Ti is the amount of time spent by the mobile sink prior to location sj and tj = tik ,j

defined as the above. For this case, if sj is chosen as a sojourn location of the mobile

sink, it must be the last sojourn location in the trajectory, and at which the sojourn

time of the mobile sink should be no more than ∆tj = T − (Ti + t′j + t′j,0). To find an

appropriate sojourn time at location sj, we re-examine sequence (4.5) by identifying

these terms whose survival times are no greater than ∆tj, choose a term among them

with the maximum value (the maximum utility gain), and put its relevant time as

the sojourn time of the mobile sink at sj. If there are multiple such locations, we

choose the one that results in the maximum utility gain. The detailed description

of the choice of the last sojourn location of the trajectory is given by Algorithm 9

Last_Location.

The detailed algorithm for the data quality maximization problem, Max_Utility,

is described in Algorithm 10.
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Algorithm 10 Max_Utility

Input: The set of potential sojourn locations S ∪ {s0}, the tolerant delay T, and the
sink speed rm

Output: The trajectory of the sink and the sojourn time tj at each sojourn location sj

1: S′ ← 〈s0〉; /* the location sequence in trajectory */;
2: max_gain← 0;
3: while there is a feasible sojourn location do
4: for each feasible sojourn location sj ∈ S do
5: for each sensor vi ∈ N(sj) do
6: Compute the survival time ti,j;
7: end for
8: Sort the survival time sequence in non-increasing order. Let

ti1,j, ti2,j, . . . , ti|N(sj)|,j
be the sorted sequence and vi1 , vi2 , . . . , vi|N(sj)| the corre-

sponding sensor sequence;
9: Find the maximum term in sequence u(sj, i1), u(sj, i2), . . . , u(sj, i|N(sj)|). Let ik

be the index of the maximum term;
10: tj ← tik ,j; U(sj)← u(sj, ik);
11: if max_gain < U(sj) then
12: next_soj_location← sj; next_soj_time← tj; max_gain← U(sj);
13: end if
14: end for
15: S′ ← S′ ∪ {next_soj_location};
16: Update the residual energy Bv for every sensor v;
17: end while
18: Add the last sojourn location by calling routine Last_Location (S′);
19: return S′ and the sojourn time tj for each sojourn location sj ∈ S′.
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4.4.2 Complexity Analysis

We now analyze the properties of algorithm Max_Utility as follows.

Lemma 3 In algorithm Max_Utility, given a feasible sojourn location sj, assume that

the sojourn time at that location is tik ,j, then, the time cost by adding location sj to the

trajectory must be greater than zero, i.e., ∆t(sj, ik) = t′j + tik ,j + t′j,0 − t′i,0 ≥ 0 for some k

with 1 ≤ k ≤ |N(sj)|.

Proof It is known that t′j,0 =
|lj,0|
rm

and t′i,0 =
|li,0|
rm

. If |lj,0| ≥ |li,0|, then t′j,0 ≥ t′i,0, and

∆t(sj, ik) = t′j + tik ,j + (t′j,0 − t′i,0) ≥ 0; otherwise, |li,0| ≤ |li,j| + |lj,0| by the triangle

inequality, i.e., t′i,0 ≤ t′j + t′j,0. Then, ∆t(sj, ik) = t′j + tik ,j + t′j,0 − t′i,0 = tik ,j + (t′j + t′j,0 −

t′i,0) ≥ 0. �

Lemma 4 In the construction of the trajectory in algorithm Max_Utility, for a given lo-

cation sj ∈ S, the following may happen: the sum of time Ti + tj + t′j + t′j,0 > T but

Ti + t′j + t′j,0 < T, the location sj if added to the trajectory must be the last sojourn location

in the trajectory, where Ti is the total amount of time (sojourn time and the travel time) spent

on the trajectory prior to adding location sj to the trajectory.

Proof We first show that the trajectory always meets the tolerant delay constraint

T. It is trivial when the trajectory contains the depot s0 only. Assume that this claim

holds for the found trajectory and si is the last sojourn location in the found trajectory.

We now extend the trajectory by adding the next sojourn location sj if possible. If

sj is a feasible sojourn location, then, the time constraint T on the tour is still met;

otherwise, no feasible sojourn location in S can be found. However, we notice that

there is still a time gap between the given time bound T and the actual time spent on

the found trajectory so far. We can make use of this time gap to collect more sensing

data from the sensors in the network. To do so, one more sojourn location can be

added to the trajectory. Let location sj be such one candidate of the sojourn location,

then Ti + tj + t′j + t′j,0 > T and Ti + t′j + t′j,0 < T; otherwise, sj is a feasible sojourn

location that has already been added to the trajectory by our assumption.
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To ensure that the resulting trajectory still meets the tolerant delay constraint, a

subset of sensors in N(sj) with a sojourn time of a chosen location will be determined

(by algorithm 9), through which the sojourn time should not be greater than the time

gap, and such a location sj must be the last location in the trajectory because no more

time gap will be left. �

Theorem 9 Given a renewable sensor network G(V ∪ S, E), a mobile sink with potential

sojourn location space S and a specified tolerant delay T, there is an algorithm for the data

quality maximization problem in G, which takes O(n log n · |S| · T) time, where n = |V|.

Proof We analyze the time complexity of the proposed algorithm Max_Utility as

follows. Within each iteration, a new sojourn location s will be added to the found

trajectory, while finding such a new location takes O(|Nmax(S)| log |Nmax(S)| · |S|) =

O(n log n · |S|) time due to survival time sorting of all nodes in N(s) and |S| feasible

sojourn locations to be examined, where Nmax(S) = {N(s) | |N(s)| ≥ |N(s′)| for

all s, s′ ∈ S} and |Nmax(S)| ≤ |V| = n. The number of iterations is determined by

T, thus, the algorithm takes O(n log n · |S| · n′) where n′ is the number of sojourn

locations in the trajectory. If the sojourn time spent at each sojourn location is at

least one-unit time, then the algorithm takes O(n2 log n · T) time since n′ ≤ T and

|S| << n. �

4.5 Distributed Implementation

So far the proposed algorithm is a centralized algorithm. As the network we are

dealing with is a distributive sensor network, we now provide a distributed imple-

mentation of the proposed algorithm in such a distributed environment, where each

node has only the knowledge of its neighbors not the entire network and harvest-

ing energy prediction at each sensor is not required, assuming that the mobile sink

knows the network topology and the location information of potential sojourn loca-

tions.

The distributed algorithm constructs the trajectory iteratively too. Within each

iteration, one sojourn location is added to the trajectory. Assume that the mobile sink
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is currently located at si and tries to find its next sojourn location and the sojourn

time at that location. To choose its next sojourn location sj, the following metrics must

be considered. (i) Prior to arriving its next location sj, the mobile sink does not know

the residual energy of sensors in N(sj). We here use a ‘time-stamp’ to approximately

represent such information associated with each potential location of the mobile sink,

which is the most recent visited time by the mobile sink. Intuitively, when a location

has a larger time stamp value, it implies that the location should be avoided to be

revisited soon because its neighboring sensors just sent their data recently and they

have not been yet fully recharged. (ii) The ideal distance of the next sojourn location

from the current one should be twice the maximum transmission range of the mobile

sink. Otherwise, if the next sojourn location is within the transmission range of

the current one, it is very likely that the data generated by most of its neighboring

sensors has been collected in the previously visited sojourn locations. On the other

hand, if the next sojourn location is chosen far from the current one, although a large

volume of data can be collected from that location, the time overhead on traveling

is relatively large, as the total amount of time per tour is bounded by T. Thus, each

potential sojourn location sj ∈ S will be ranked based on its priority weight consists

of its time stamp, the distance to the current sojourn location, and the amount of

traveling time t′j + t′j,0 of sj. The mobile sink then chooses a location with the highest

priority as its next sojourn location. Fig. 4.2 is an example to illustrate the choice

of next sojourn location of the mobile sink. If the location sw near to si is chosen as

the next sojourn location, the expected volume of data collected from this location

would not be big, because most its neighboring sensors have just sent their data to

the mobile sink when the sink was at location si. The next three locations are sl , sj′

and sj, where the distances from both sj′ and sj to si are at least twice the maximum

transmission range R. The priority weight of sj is higher than that of sj′ because

the traveling time at sj is less than that at sj′ . Although location sl has the similar

property as location sj and the less amount of traveling time, its time-stamp value is

larger than that of location sj, which means that some of its neighboring sensors have

just sent their data to the mobile sink at a previous location si−1. Thus, its priority

weight is lower than that of sj. For location sk, although its time stamp value is small,
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it has a longer distance from the current location and the traveling time at it is far

larger than to any other location. Thus, it would not have a higher priority weight.

Priority weights of all locations are labeled in the figure.

mobile sink collection tour
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Figure 4.2: The choice of the next sojourn location sj of the mobile sink, assuming
that the current sojourn location is si.

The distributed algorithm for the data quality maximization problem, Dis_Max_Utility,

is described as follows. For the mobile sink located at the current sojourn location

si (initially located at s0), it repeats the following procedure. It finds its next sojourn

location sj and the sojourn time based on the priority weight metric. If no such a

location exists, this implies that adding any new location will violate the specified

tolerant delay constraint, the algorithm terminates. Otherwise, a location sj with the

highest priority will be chosen as its next sojourn location, and the mobile sink trav-

els from si to sj. The mobile sink then broadcasts a ‘Hello’ message at location sj.

Upon receiving ‘ACK’ messages from all responded sensors vi′ ∈ N(sj), the mobile

sink computes the survival time ti′,j of each sensor vi′ . Let ti1,1, ti2,j, . . . , ti|N(sj)|,j
be the

sorted survival time sequence in non-increasing order and let vi1 , vi2 , . . . , vi|N(sj)| be

the corresponding sensor sequence. The mobile sink then finds the maximum term

from sequence (4.5) and let ik be the index of the maximum term. The mobile sink

then updates the time-stamp of location sj by a new value Ti + t′j + tj and broadcasts

the sojourn time tj to all sensors in N(sj), where tj = tik ,j. It finally receives the

sensed data from the responded sensors.
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For each sensor vi′ ∈ N(sj), upon receiving the ‘Hello’ message from the mobile

sink, it responds by sending an ‘ACK’ message. The ‘ACK’ message contains the

information of node vi′ : its current residual energy and its distance to location sj.

Upon receiving the sojourn time tj from the mobile sink located at sj, sensor vi′

sends its data to the mobile sink for a time duration of tj if ti′,j ≥ tj. Otherwise, it

sends its data to the mobile sink for a time duration of ti′,j if ti′,j ≤ tj.

Theorem 10 Given a renewable sensor network G(V ∪ S, E), a mobile sink with potential

sojourn location space S and a specified tolerant delay T, there is a distributed algorithm for

the data quality maximization problem in G, which takes O(|S| · T) time.

Proof We analyze the time complexity of the proposed algorithm Dis_Max_Utility

as follows. Within each iteration, a new sojourn location s will be added to the found

trajectory, while finding such a new location takes O(|S|) time due to |S| feasible

sojourn locations to be examined. Thus, the algorithm takes O(|S| · n′) where n′ is

the number of sojourn locations in the trajectory. If the sojourn time spent at each

sojourn location is at least one-unit time, then the algorithm takes O(|S| · T) time

since n′ ≤ T. �

4.6 Performance Study

In this section we study the performance of the proposed algorithms through exper-

imental simulation.

4.6.1 Experimental Environment Setting

We consider a renewable sensor network consisting of 100 to 1, 000 sensors randomly

deployed in a 100m× 100m square region. The depot of the mobile sink is located

at one corner of the square. For the sake of convenience, we set rm = 2m/s for

the speed of the mobile sink, and adopt similar communication parameters setting

mentioned in Chapter 3, where the unit energy consumption varies according to

the corresponding distance to some extent. The potential sojourn locations in S
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are also randomly generated with the default value |S| = 50. Each sensor v has

a data generation rate gv = 1Kbps and a data transmission rate rv = 5Kbps. Each

sensor is powered by a solar panel with a dimension (10mm× 10mm) and its battery

capacity is 10, 000Jules. The solar power harvesting profile is built upon the real solar

radiation measurements [61], in which the total amount of energy collected from a

37mm × 33mm solar cell over a 48-hour period is 655.15mWh in a sunny day and

313.70mWh in a partly cloudy day. We here adopt f (x) =
√

x as the utility function,

which can be easily extended to other utility functions. Each value in figures is the

mean of the results by applying each mentioned algorithm to 30 different network

topologies of the same network size.

4.6.2 Performance Evaluation of Different Algorithms
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(d) T = 1, 600s

Figure 4.3: The network data quality performance of different algorithms by varying
the network size n and setting the tolerant delay T = 200s, 400s, 800s and 1, 600s.
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We first investigate the performance of algorithms Max_Utility and Dis_Max_Utility

against that of another heuristic Random_Utility - a variant of algorithm Max_Utility

by randomly selecting a feasible sojourn location in S within each iteration. We

vary network size n from 100 to 1, 000 and set tolerant delay T as 200s, 400s, 800s

and 1, 600s, respectively. Fig. 4.3 clearly shows that both algorithms Max_Utility

and Dis_Max_Utility outperform algorithm Random_Utility significantly. For in-

stance, when T = 400s or T = 1, 600s, the network data quality of algorithms

Max_Utility and Dis_Max_Utility is around 32% and 21%, or 40% and 25% higher

in comparison with that of algorithm Random_Utility. Note that when T = 200s, the

network data quality of algorithms Dis_Max_Utility and Random_Utility some-

times are at the same level, because 200s is too tight so that the mobile sink can not

have enough opportunities to visit sojourn locations.

4.6.3 Impact of Tolerant Delay T and Network Size N on the Performance

of Algorithms
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Figure 4.4: Impact of parameters tolerant delay T and network size n on the network
data quality performance of different algorithms.

We then study the impact of tolerant delay T and network size n on the perfor-

mance of algorithms by varying n from 100 to 1, 000 while keeping tolerant delay T

at 200s, 400s, 800s, 1, 600s, 3, 200s, and 6, 400s, respectively. Fig. 4.4 shows that with

the growth of T, the performance of algorithms Max_Utility and Dis_Max_Utility

significantly improves. However, the performance gap among the mentioned algo-
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rithms becomes marginal when T ≥ 3, 200s, because all potential sojourn locations

in S have almost been visited during this long time period. With the increase of

network size, we observe that the network data quality of all proposed algorithms

increases, too. For example, when T is fixed at 800s and n varies from 100 to 1, 000,

the network data quality of algorithm Max_Utility is 37.1, 70.2, 102.7, 134.7, 169.7,

198.4, 235.1, 263.7, 301.5, and 333.5, respectively. The network data quality of al-

gorithm Dis_Max_Utility is 31.5, 59.9, 85.1, 127.1, 145.5, 167.5, 208.8, 220.6, 263.8,

and 281.8, respectively. Notice that algorithm Max_Utility outperforms algorithm

Dis_Max_Utility, as Dis_Max_Utility only has the local knowledge of the network

and does not need harvesting energy predictions of sensors.

4.7 Conclusions

In this chapter we have studied mobile data collection in a renewable sensor network

via a mobile sink with controlled mobility, subject to the tolerant delay constraint. We

first formulated a data quality maximization problem. We then devised a heuristic

algorithm, and provided an efficient distributed implementation of the proposed al-

gorithm. Finally, we evaluated the performance of the proposed algorithms through

experimental simulation, and experimental results demonstrate that the proposed

algorithms are very promising.



Chapter 5

Charging Maximization in

Renewable Sensor Networks with

A Mobile Charger

5.1 Introduction

With the advance of energy harvesting technology, renewable sensor networks are a

key step in paving the way for truly green systems that can operate ‘perpetually’ and

do not adversely impact on the environment. An ideal solution is to enable sensors

to harvest energy from their surroundings [26, 44, 55, 77, 78, 79]. However, energy

harvesting unfortunately is not stable and the amount of energy harvested is hardly

predictable. For example, the solar energy harvested is usually affected by many

factors including time (whether exposed under the sun), weather, and season. This

poses a great challenge in the design of energy-efficient protocols for wireless sensor

networks to maintain them operational.

The recent breakthrough in wireless energy transfer technology provides a promis-

ing alternative or supplementary solution to power sensors. Particularly, employing

two strongly coupled magnetic resonant objects, Kurs et al. [49] exploit the resonant

magnetic technique to transfer energy from one storage device to another without

any plugs or wires. The reported experiment demonstrated that a wireless illumi-

nation of a 60 watts light bulb from 2 meters away achieved a 40% energy transfer

efficiency. What makes such wireless energy transfer technology particularly attrac-

99
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tive is that it does not require line-of-sight or any alignment (i.e., omnidirectional),

and is insensitive to environments. Armed with this advanced technology, sensor

can be charged at steady and high charging rates. On the other hand, another break-

through in the ultra-fast charging battery materials further fuels the feasibility of

the wireless power transfer technique. Scientists from MIT implemented a ultra-fast

charging in material LiFePO4, which can be charged at a rate as high as 400 Coulombs

per second [43]. The time of fully-charging a battery thus can be shortened into a

few seconds. Therefore, wireless power charging is a promising technique to prolong

the lifetime of sensor networks. This promising technique will provide a controllable

and perpetual energy source to recharge sensors if needed.

In this chapter, we employ mobile wireless chargers to replenish sensors in a

large-scale sensor network with wireless power transfer. We consider a heteroge-

nous sensor network in which sensors have significant variations in the sampling

needs and energy consumptions. A typical example is a sensor network deployed

for ecological study that consists of sensors of different modalities like humidity, tem-

perature, video, etc. The sensing rates of different sensors vary, depending on their

physical phenomenon. Under this setting we here investigate an on-demand wireless

sensor charging paradigm. That is, sensors send their recharging requests to the base

station according to their residual energy status, and the base station then dispatches

the wireless mobile charger to start a charging tour and recharge these requested

sensors. Specifically, the following issues must be addressed: (1) which sensors are

to be included in each charging task? (2) given a set of to-be-charged sensors, which

sensors should be charged first? We tackle these challenges by formulating a novel

optimization problem and devising efficient scheduling algorithms for it.

The contributions of this chapter are summarized as follows.

• We first study an on-demand energy replenishment in renewable sensor net-

works by employing a wireless mobile charger and formulate an optimization

problem with an objective of maximizing the number of sensors charged (charg-

ing throughput) per tour.

• We then devise an offline approximation algorithm which runs in quasi-polynomial
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time by reducing the formulated optimization problem to the orienteering

problem with time windows. We also provide online heuristics where recharg-

ing requests arrive one by one without the future arrival knowledge.

• We finally conduct extensive simulations to study the efficiency of the pro-

posed algorithms in both small-scale and large-scale networks. Experimental

results demonstrate that the proposed algorithms are very efficient in terms of

charging throughput.

The rest of the chapter is organized as follows. Section 5.2 summaries related

works. Section 5.3 introduces the network model and problem definition. Sections 5.4

and 5.5 propose an offline approximation algorithm and two online heuristics, re-

spectively. Section 5.6 presents the simulation results, and Section 5.7 concludes the

chapter.

5.2 Related Work

Armed with the wireless energy transfer technology, several studies on employing

mobile vehicles with high volume batteries as mobile chargers to recharge energy

for sensors have been conducted [4, 21, 27, 38, 51, 75, 83, 95, 101, 116, 118]. For

example, Shi et al. [83, 100] applied this technology for a wireless sensor network,

where the sensing rates of sensors are fixed and known in advance, and sensing data

is forwarded to a stationary base station through multi-hop relays. They formulated

a joint optimization problem for flow routing and energy recharging, and showed

that each sensor will not run out of energy by having a mobile charger periodically

visits and charges it. Xie et al. [102] extended this solution by allowing charging

multiple sensors simultaneously. Li et al. [51] analyzed the possibility of practical

and efficient joint routing and charging schemes where each sensor sends data hop-

by-hop to the sink periodically using the Collection Tree Protocol. They showed

that the network lifetime is prolonged by a mobile charger which mostly moves

along energy-minimum paths. Xie et al. [101, 103] applied this technology for a

wireless sensor network where a mobile station is employed for both data collection
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and energy charging. They formulated an optimization problem that involves joint

optimization of traveling path, stopping points, charging schedule and data flow

routing, and developed a provably near-optimal solution. Zhao et al. [118] considered

a joint optimization of mobile data collection and energy charging, and devised an

adaptive solution that jointly selects the sensors to be charged and finds the optimal

data gathering scheme. Wang et al. [95] studied wireless energy charging in event

detection scenarios and proposed a joint solution including stochastic charging and

adaptive sensor activation. Most of these mentioned studies assumed that both the

sensing rate and the energy consumption rate of each sensor are fixed and given in

advance. However, in terms of different application scenarios (e.g. event detection),

both the sensing and energy consumption rates of each sensor vary over time. Thus,

most of these existing solutions are not applicable in such time-varying application

scenarios.

In terms of on-demand sensor energy replenishment, He et. al. [38] also studied

an on-demand mobile charging problem. An essential difference between their work

with ours is that they didn’t put any constraint on the mobile charger in considera-

tion, while we consider tour time constraint on the mobile charger.

5.3 Charging Throughput Maximization Problem

We consider a sensor network consisting a set V of heterogenous sensors and a sta-

tionary base station v0 deployed over a rectangle region. Each sensor vi ∈ V is

equipped with a rechargeable battery of capacity Bi and consumes energy on sens-

ing and data transmission activities. Each sensor vi will send its recharging request

ci = (vi, REi, ri) once its residual energy REi falls below a pre-defined threshold

Mi = α · Bi, where REi is the residual energy of vi, ri is the release time and α is a

constant with 0 < α < 1.

5.3.1 Charging Model

A mobile charger is a moving vehicle equipped with a powerful wireless charger

and it can keep information synchronized with the base station via a long range
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radio [51]. It starts from the base station and recharges sensors based on the recharg-

ing requests received. Since the mobile charger consumes petrol either on moving or

charging, we then assume that each charging tour of the mobile charger is bounded

by a pre-defined time period T. That is, the mobile charger must finally return to

the base station within time period T to be serviced (e.g., refueling, maintenance

service). For simplicity, we assume that a mobile charger per tour has enough en-

ergy to charge all sensors [38, 83]. In our model the charging is performed from

points to points, i.e., only one sensor can be fully charged at each time by the mobile

charger when the sensor is in the vicinity of the mobile charger so that the charg-

ing process has the maximum efficiency. Given battery material breakthroughs for

ultra-fast charging [43], we further assume that the charging time at each sensor is a

constant C [38]. We also assume that the mobile charger travels at a constant speed

S. An example of this charging paradigm is illustrated in Fig. 5.1, where sensors

will send their requests to either the base station or the mobile charger anytime if

their residual energy levels are below the given thresholds. The mobile charger then

starts a charging tour from the base station and travels around the deployment field

to charge sensors. When the mobile charger is traveling, it may still receive new

charging requests from sensors as well. Finally it returns to the base station within

time period T so that it can be maintained and prepared for next charging tour.

base station mobile charger charging tour

sensor sensor with charging request

Figure 5.1: An example of charging paradigm.
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5.3.2 Charging Throughput

In order to measure the contribution of the mobile charger, we introduce the charging

throughput concept. If a sensor runs out of energy, it will stop functioning. We thus

expect that each sensor never runs out of its energy, or it will be recharged prior to its

energy expiration. Ideally, we define the charging throughput of the mobile charger

to be the average functioning time of sensors during a charging tour. However, due

to the dynamic nature of sensor activities, it is hard to get or predict the sensors’

functioning time. To be practical, we here use the total number of sensors getting

charged during a charging tour to represent the charging throughput of this charging

tour. For an instance, in Fig. 5.1, there are total 10 sensors waiting for charging, and

the mobile charger finally charges 8 of them before it returns to the base station.

Thus, the charging throughput of this charging tour is 8. Note that the rest 2 sensors

uncharged will keep stay in the waiting list, and the mobile charger will take them

into consideration during next charging tours until they finally get charged.

5.3.3 Problem Statement

Given a time period T per tour by the mobile charger, the base station may receive

many recharging requests, depending on the network scale and energy status of

sensors. Let Qc be the queue of recharging requests and Vc be the set of sensors to be

charged, which are updated dynamically as recharging requests arrive one by one.

Since the mobile charger takes time when it travels among the sensors, sometimes it

may not be possible to charge all requested sensors per tour within time period T.

The charging throughput maximization problem thus is to find a close tour for the mobile

charger, such that the charging throughput is maximized, subject to the amount of

time per tour being bounded by T. Specifically, assuming that all recharging requests

from sensors Qc = {(vj, REj, rj)|vj ∈ Vc} are given in advance, the offline charging

throughput maximization problem can be defined as follows.

Given a set Vc ⊆ V of sensors to be recharged, a tour P = {(vj, tj)}m
j=0 is a

sequence of pairs (vj, tj), where vj ∈ Vc ∪ {v0} and tj is the arrival time when a

mobile charger visits vj. Noticing that v0 is the depot of the mobile charger, the
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feasibility constraint for a tour is

t0 = 0 (5.1)

t1 = t0 + l(v0, v1) (5.2)

tj+1 = tj + C + l(vj, vj+1), 1 ≤ j < m (5.3)

tj ≥ rj, 1 ≤ j < m (5.4)

tm + C + l(vm, v0) ≤ T (5.5)

where l(vj, vj+1) is the travel time of the mobile charger from vj to vj+1, C is a constant

charging time, and T is a given finite-horizon time period. Constraint (5.4) ensures

that a sensor should be charged only after it sends out a request. Constraint (5.5)

ensures that the mobile charger will return to v0 ultimately. The goal is to find a tour

with the maximum charging throughput. Different from most existing studies, we

here consider finding a charging tour to maximize the charging throughput, other

than finding a charging tour to keep all sensors alive, since in reality it could be

impossible to keep all sensors alive due to the limited resource/capability of the

mobile charger.

5.3.4 NP-Hardness

We show that the offline charging throughput maximization problem is NP-hard by

the following theorem.

Theorem 11 The offline charging throughput maximization problem is NP-hard.

Proof We show the claim by a reduction from a well-known NP-hard problem - the

orienteering problem [33] which is defined as follows. Given n nodes in the Euclidean

plane labeled from 1 to n and each with a score, find a route of the maximum score

through these nodes beginning at 1 and ending at n of length (or duration) no greater

than a given budget. Clearly, assuming that each recharging request is released at

the beginning of the given time period T, it is easy to verify that this special case of

the offline charging throughput maximization problem is equivalent to the defined
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orienteering problem. Hence, the offline charging throughput maximization problem

is NP-hard too. �

5.4 Offline Approximation Algorithm

In this section, we first devise an approximation algorithm for the charging through-

put maximization problem by assuming that all recharging requests in a given time

period T are known in advance. We reduce the problem to the orienteering prob-

lem with time windows. The solution to the latter in turn returns an approximate

solution to the former.

The orienteering problem with time windows is defined as follows. Given a

directed edge weighted graph G′ = (V ′, A′, l′) with l′(u, v) denoting the length of

edge (u, v) from u to v and each node v′ ∈ V ′ having a time window [R(v′), D(v′)]

during which it can only be visited no earlier than R(v′) and no later than D(v′) with

R(v′) ≤ D(v′), two nodes s, t ∈ V ′ and an integer budget B > 0, find an s− t walk

of length at most B to maximize the number of vertices covered. Chekuri et al. [17]

proposed a recursive greedy algorithm for the orienteering problem.

In the following we reduce the problem of concern to the orienteering problem

with time windows. Given a set Vc of sensors to be recharged, we construct a directed

graph Gc = (V ′c ∪ {v0}, Ac, l) with the budget T > 0, where the base station v0

with a time window [0, T] corresponds to the node s, and the base station v0 also

corresponds to the node t. For each node vi ∈ Vc, there are two corresponding nodes

v′i with a time window [ri, T] and v′′i with a time window [ri + C, T] in V ′c , and an

edge from v′i to v′′i with l(v′i, v′′i ) = C, where ri is the charging request release time

of vi and C is the charging time on vi. Recall that l(vi, vj) is the travel time of the

mobile charger from vi ∈ Vc ∪ {v0} to vj ∈ Vc ∪ {v0}. We then add edges from v0

to each node v′i ∈ V ′c and let l(v0, v′i) = l(v0, vi). We also add edges from each node

v′′i ∈ V ′c to v0 and let l(v′′i , v0) = l(vi, v0). We finally add edges from each node

v′′i ∈ V ′c to each different node v′j ∈ V ′c − {v′i} and let l(v′′i , v′j) = l(vi, vj). As a result,

Gc = (V ′c ∪ {v0}, Ac, l) is obtained, where l(u, v) is the length of edge (u, v).
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5.4.1 Algorithm

Algorithm 11 Offline_Appro(vs, ve, ts, te, V ′c , r)
Input: A directed edge weighted graph Gc = (Vc ∪ {v0, tc}, Ac, l) and a given time

budget T.
Output: A tour P starts from v0.

1: if l(vs, ve) > te − ts then
2: /* It implies that the time budget is not enough even the mobile charger goes

directly from vs to ve */
3: return Infeasible;
4: end if;
5: P←< vs, ve >;
6: if r == 0 then
7: /* The recursive limit works*/
8: return P;
9: end if;

10: /* m(P) calculates the number of nodes covered by P */
11: max ← m(P);
12: for each v ∈ Vc do
13: /* Guessing the middle node visited */
14: vm ← v;
15: for 1 ≤ T′ ≤ (te − ts) do
16: /* Guessing the time budget used */
17: Tm ← T′;
18: Ple f t ← Offline_Appro(vs, vm, ts, ts + Tm, V ′c , r− 1);
19: Pright ← Offline_Appro(vm, ve, ts + Tm, te, V ′c −V(Ple f t), r− 1);
20: if m(Ple f t · Pright) > max then
21: /* Concatenation of the two separate tours */
22: P← Ple f t · Pright;
23: max ← m(Ple f t · Pright);
24: end if;
25: end for;
26: end for;
27: return P.

The proposed approximation algorithm is as follows: It first guesses the middle

node vm in a tour of the mobile charger, and the amount of time consumed Tm within

the time budget T by the mobile charger from v0 to vm, assuming that T is an integer.

The guessing step is implemented by enumerating all candidate nodes as the middle

node vm as well as the possible value of Tm, 1 ≤ Tm < T. Notice that we can use

standard scaling and rounding ideas to ensure that all values within the total time
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budget T are integers and polynomially bounded. It then recursively finds a tour

Ple f t from v0 to vm with budget Tm, which means a tour Ple f t starts at v0 at time 0

and has to reach vm no later than time Tm. It also finds another tour Pright starting

from vm and ending at v0 with the budget T − Tm to augment the nodes that are not

covered by Ple f t, which means a tour Pright starts at vm no earlier than time Tm and

has to reach v0 at time T. It finally outputs the tour obtained by concatenating Ple f t

and Pright. Let procedure Offline_Appro(vs, ve, ts, te, V ′c , r) be used to implement the

recursive greedy algorithm mentioned above, where vs is the start node with starting

time ts, ve is the end node with ending time te, and r indicates the depth of the

recursion allowed. Note that vs and ve can be the same which implies a close tour.

The details are described in Algorithm 11.

5.4.2 Complexity Analysis

We now analyze the properties of algorithm offline_Appro as follows.

Theorem 12 Given a set Vc of sensors to be charged within a time period T in the defined

wireless sensor network, there is an approximation algorithm offline_Appro for the offline

charging throughput maximization problem with approximation ratio of O(log |Vc|), which

takes O((|Vc| · T)log |Vc|) time.

Proof Following the classical results in [17], the theorem follows, omitted. �

5.5 Online Heuristics

So far we have provided an offline approximation algorithm by assuming that all

recharging requests are given in advance. In reality, it is impossible to know the

requests in advance until they are actually received. In the following we develop an

online algorithm, where the recharging requests arrive over time. In other words, it

is very likely that new recharging requests will be received when the mobile charger

moves towards its next charging sensor or is charging the current sensor.

For this online version of the problem, a naive approach is to construct the tour of

the mobile charger iteratively. That is, within each iteration, a new recharging request
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is added to the tour and the mobile charger will serve it. The sum of the traveling

time and charging time of charging a sensor can be treated as the processing time of

serving a recharging request. This will lead to an online algorithm Online_SPT [70]:

choose one sensor with the shortest processing time from all available recharging

requests. Specifically, assume that the mobile charger currently stays at the location

of sensor vi and finishes its charging. Recall that l(vi, vj) is the travel time of the

mobile charger from vi to vj, and C is the constant charging time. The amount of time

for serving the recharging request cj of sensor vj is l(vi, vj) + C + l(vj, v0)− l(vi, v0),

where v0 is the depot of the mobile charger. We thus choose a sensor to charge if

its recharging request incurs the minimum amount of serving time. This procedure

continues until the tour time constraint T is no longer met.

Notice that once the mobile charger visits and charges a sensor, the serving time

cost of the mobile charger changes due to the change of the location of the mobile

charger. Thus, the solution delivered by algorithm Online_SPT may be sub-optimal,

which can be illustrated by Figure 5.2.

Base Station

sensor 1

sensor 2

sensor 3

3

4

4

1

4

Figure 5.2: An example scenario where the time constraint T is 11, the constant
charging time C is 1 and the travel time between nodes is as labeled.

In this example, all three sensors are waiting for charging, the SPT-rule based

solution is: Base→1→Base, where only sensor 1 is charged. Notice that although

sensor 2 requires longer serving time than sensor 1, it is much closer to sensor 3.

Hence it is easy to verify a better solution: Base→2→3→Base, where both sensor 2

and 3 will be charged.
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5.5.1 Improved Online Heuristic

Inspired by the illustrated example, we here propose a clustering-based algorithm,

which takes both the serving time and the sensor locations into consideration. In

general, the proposed algorithm proceeds iteratively. The mobile charger makes its

next charging decision only when it finishes recharging the currently chosen sensors

already. Within each iteration, it will charge a set of sensors instead of a single sensor.

To this end, it first groups recharging requests into different ‘clusters’ according to

the locations of the involving sensors, and then identifies a group as its next charging

target with maximizing a metric (to be defined later).

Recall that Vc is the set of sensors to be charged which is updated dynamically.

Specifically, within each iteration, for a given integer K ≤ |Vc|, we first group all sen-

sors to be charged based on their geographical locations, by adopting a well-known

K-means clustering algorithm – Lloyd’s algorithm [66], which aims to partition |Vc|

nodes into K clusters such that each node belongs to the cluster with the nearest

mean. Let V1, V2, ...VK be the K clusters formed, where V1 ∪ V2 ∪ ...VK = Vc. Assum-

ing the mobile charger currently stays at the location of sensor va, for each cluster

obtained, we then find a charging path for the mobile charger that starts from va, vis-

its every node in the cluster exactly once and finally returns to the base station v0 by

adopting a MST heuristic for the Traveling Salesman Problem (TSP) [8]. A cluster Vi

is a feasible charging cluster if the time spent on all previous charging and traveling T′,

plus the time spent for charging this cluster |Vi| · C, and the relevant traveling time

l(Vi) is no more than T, i.e., T′ + |Vi| · C + l(Vi) ≤ T, where l(Vi) is the travel time

to finish the relevant path from va to v0. If no feasible charging cluster can be found,

it implies that the value of K need to be adjusted. We then change the value of K

iteratively by setting K = min{bβ · Kc, |Vc|} and re-partition until a feasible charging

cluster is found, where β = 2 is the adjusting rate which can also be set as any real

number larger than 1. Denote by ∆gain(Vi) = |Vi |
l(Vi)−l(va,v0)+|Vi |·C the charging gain

of cluster Vi. We finally choose a cluster with the maximum charging gain from all

feasible clusters as the next charging cluster. That is, the mobile charger will start

from va and charge all the sensors within the chosen cluster along the found path.
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In summary, the algorithm proceeds iteratively. Initially, the mobile charger starts

from the base station. Within each iteration, the mobile charger chooses a feasible

charging cluster of sensors with maximum charging gain from the K clusters formed

to charge. Once no feasible cluster is found, the K is then self-adjusted and re-

evaluated iteratively until a feasible cluster is got. This procedure continues until the

tour time constraint T is no longer met. The detailed algorithm Online_K_Cluster

is described in Algorithm 12.

Algorithm 12 Online_K_Cluster

Input: A set Vc of sensors to be charged which varies over time, a given time period
T, and a specified constant K.

Output: A tour P starts from base station v0.

1: P←< v0 >; Kinit ← K;
2: va ← v0; /* the current location of the mobile charger */
3: t← 0; /* the current time */
4: while t ≤ T do
5: Apply a K-means clustering algorithm to partition Vc into K clusters:

V1, V2, ...VK;
6: For each cluster, find a path from va that visits every node within this cluster

and finally returns to v0 by adopting a MST heuristic for TSP problem;
7: Once no feasible cluster is found, then adjust K by setting K = min{2K, |Vc|}

and repartition.
8: if K == |Vc| and no feasible cluster found then
9: Break; /* the mobile charger return to v0 */

10: end if;
11: Calculate charging gain for each feasible cluster;
12: /* Assuming cluster Vi has maximum charging gain, the mobile charger then

goes to charge sensors in this cluster by following the found path */
13: Add the charged sensors in P;
14: Update sensor set Vc, va and t accordingly;
15: K ← Kinit; /* reset K for next iteration */
16: end while;
17: return P.

Theorem 13 Given a time period T per tour and an integer K in a wireless sensor network,

there is an online algorithm Online_K_Cluster for the charging throughput maximization

problem, which takes O(|V|2 · log |V| · T) time, where |V| is the total number of sensors.

Proof Clearly, the algorithm Online_K_Cluster yields a feasible solution to the

charging throughput maximization problem. We then analyze the time complexity
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in the following. Within each iteration, applying Lloyd’s algorithm takes O(|Vc| ·K · l)

time, where Vc is the set of sensors to be charged and l represents the number of sub-

iterations. Calculating the charging gain for a cluster takes O(|Vc|2). As the value of

K may need to be adjusted by setting K = min{2K, |Vc|} and l can be bounded by

a pre-defined constant, finding a feasible cluster with maximum charging gain takes

O(|Vc|2 · log |Vc|) time. It is easy to verify that the number of iterations is bounded

by T. The algorithm thus takes O(|Vc|2 · log |Vc| · T) = O(|V|2 · log |V| · T) time, since

|Vc| ≤ |V|. �

5.6 Performance Study

In this section we evaluate the performance of the proposed algorithms through

experimental simulation. We also study the impact of the cluster parameter K on

algorithm performance.

5.6.1 Experimental Environment Setting

Two different scale networks are considered in our experiments. One is a small-

scale network consisting of 10 to 30 sensors randomly deployed in a 50m × 50m

square area, and another is a large-scale network consisting of 100 to 1, 000 sensors

randomly deployed in a 500m× 500m square area. The base station (the depot of the

mobile charger) is located at one corner of the square. Due to the dynamic nature of

sensing activity, each sensor randomly sends its recharging requests within a given

time period T. Without loss of generality, we here set T = 30s for a small scale

network, and also set the time period for a large scale network at T = 1, 800s and

T = 3, 600s, respectively. We further assume that the default constant charging time

for each sensor is 2s, and the mobile charger travels at a constant speed 8m/s. Each

value in figures is the mean of the results by applying each mentioned algorithm to

30 different network topologies of the same network size.
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5.6.2 Performance Evaluation of Both Offline Approximation and Online

Heuristic Algorithms

In this subsection we first evaluate the performance of the offline approximation algo-

rithm as well as two proposed online heuristics Online_SPT and Online_K_Cluster

in small-scale networks by varying the network size from 10 to 30 and setting the

cluster parameter K = 3, while the time period T is fixed at 30s.
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Figure 5.3: The charging throughput performance of both offline approximation and
online heuristic algorithms.

Fig. 5.3 clearly shows that offline algorithm Offline_Appro outperforms the two

online heuristics Online_SPT and Online_K_Cluster significantly. With the increase

on network size, the performance gap becomes larger. The reason behind is that the

offline algorithm has the perfect information of all requests. and use a nearly ex-

haustive search method. Obviously, when there is small-scale recharging requests

workload and the global knowledge is available (e.g., by prediction), the offline al-

gorithm is the best choice. However, the offline algorithm is very computationally

expensive which makes it impractical in large-scale workload scenario.

5.6.3 Performance Evaluation of Online Heuristic Algorithms

In this subsection we investigate the performance of two online heuristics Online_SPT

and Online_K_Cluster in large-scale networks by varying the network size from 100

to 1, 000 and setting the cluster parameter K at 5, while the time period T is fixed at
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(a) T = 1, 800s
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Figure 5.4: The charging throughput performance of online algorithms by varying
the network size and setting the given time period T at 1,800s and 3,600s.

1, 800s and 3, 600s, respectively.

Fig. 5.4 demonstrates that the charging throughput of algorithm Online_K_Cluster

outperforms that of Online_SPT with the increase of the network size. For example,

in Fig. 5.4(a), when the network size is greater than 100 and T is 1,800s, the charg-

ing throughput of Online_K_Cluster is at least 20% more than that of Online_SPT.

When the network size becomes larger, the performance gap also grows upto around

47%. Similarly, in Fig. 5.4(b), when the network size is greater than 200 and T is

3,600s, the charging throughput of Online_K_Cluster is at least 19% more than that

of Online_SPT. It also can be noticed that with a larger time period T, the charging

throughput of both Online_SPT and Online_K_Cluster is increased, as the mobile

charger has more time available to serve the recharging requests.

5.6.4 Impact of Cluster Parameter K on Charging Throughput Performance

We finally study the impact of the cluster parameter K on the performance of al-

gorithm Online_K_Cluster by setting K at 1, 5, 10, 20, and 30, while the network

size varies from 100 to 1,000 and the time period T is fixed at 1, 800s and 3, 600s,

respectively.

From Fig. 5.5, it can be seen that the charging throughput of algorithm Online_K_Cluster

with K = 1, K = 5 and K = 10 is at the same level, while algorithm Online_K_Cluster
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Figure 5.5: The impact of cluster parameter K by varying the network size n and
setting the tolerant delay T at 1,800s and 3,600s.

with K = 30 delivers the worst performance. With the network size grows, the per-

formance gap becomes smaller. Specifically, in Fig. 5.5(a), the charging through-

put of algorithm Online_K_Cluster with K = 5 outperforms that of algorithm

Online_K_Cluster with K = 1 and K = 10 slightly, and is more than at least 25%

and 19% compared with that of algorithm Online_K_Cluster with K = 20 and

K = 30 when the network size is less than 800, respectively. Fig. 5.5(b) also exhibits

the similar performance behavior in which algorithm Online_K_Cluster with K = 1

outperforms algorithm Online_K_Cluster with K = 5 and K = 10 slightly, omitted.

In general, the charging throughput of algorithm Online_K_Cluster decreases when

the K value is too large. In order to achieve a best charging throughput, a proper K

should be assigned according to the network size and the tour time bound.

5.7 Conclusions

In this chapter we have studied the problem of finding an optimal close trajectory

for a mobile charger in renewable sensor networks, subject to the time duration con-

straint of the mobile charger per tour. We formulated the problem as a charging

throughput maximization problem with an aim of maximizing the number of sen-

sors charged per tour. Due to the NP-hardness of the problem, we then proposed an

offline approximation algorithm and two online heuristics. Finally, we evaluated the
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performance of the proposed algorithms through experimental simulation, and pro-

vided numerical results to validate the efficiency of the proposed algorithms. Nev-

ertheless, our work mainly focuses on maximizing the number of sensors charged,

which may result in biased charging behavior in some edge cases (e.g. some sensors

that are far from the base station or sparsely located have few opportunities to be

charged). We will extend our work in future by considering fairness issues as well.



Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions we made in this thesis, followed by dis-

cussing several potential research topics derived from this work.

6.1 Summary of Contributions

Several key issues of deploying renewable sensor networks for sustainable moni-

toring were studied in this thesis. New concepts, models, optimization techniques,

and implementations were proposed and evaluated for renewable sensor networks to

achieve unattended and continuing quality-aware services. As almost all the formu-

lated problems are NP-hard, approximate solutions with guaranteed performance

ratios for gathering data from sensor nodes and replenishing energy to sensor nodes

efficiently were developed. Fast and scalable algorithms were devised by exploiting

the combinatorial property of resource optimization problems (target coverage, mo-

bile data collection, and energy replenishment). The main contributions of this thesis

are summarized as follows.

• We investigated existing energy harvesting prediction approaches. Specifically,

we investigated the accuracy of the energy harvesting prediction approach

VEWMA in comparison with the one of a basic prediction approach EWMA, using

the real solar data profiles obtained from The National Solar Radiation Data

Base in the States [7], which contain the most comprehensive collection of solar

data for public access.

• We dealt with the coverage quality efficiency in renewable sensor networks.
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We introduced a new metric that is a weighted linear combination of two

sub-modular utility functions to measure the coverage quality within differ-

ent time scales. Based on the proposed metric, we devised an offline algorithm

Greedy_Heuristic and its distributed implementation Distributed_Implement

to schedule sensors’ duty-cycles within the given energy budget to maximize

the coverage quality. We also proposed an adaptive framework Adaptive_Framework

to deal with harvesting energy prediction fluctuations, and showed that under

this adaptive framework, the proposed centralized and distributed algorithms

are still applicable.

• We addressed the optimization of data collection by sensor networks in two ap-

plication scenarios. We first studied the data collection maximization problem

in a renewable sensor network with a path-constrained mobile sink, and pro-

posed an offline approximation algorithm Offline_Appro and an online dis-

tributed algorithm Online_Appro to schedule sensors transmitting their data

to the mobile sink, through incorporating time-varying sensor energy budgets

and employing multi-rate wireless communications. We also investigated the

data quality maximization problem in a renewable sensor network, where a

mobile sink with controlled mobility is employed for data gathering, and devel-

oped a centralized algorithm Max_Utility and its distributed implementation

Dis_Max_Utility for the problem, which find a close trajectory for the mobile

sink and schedule the sojourn time at each sojourn location.

• We studied the energy provisioning for renewable sensor networks, by utilizing

wireless energy transfer technology. We formulated the charging throughput

maximization problem in a renewable sensor network where a mobile charger

travels around the sensing field to replenish sensors with energy. We reduced

the problem to the orienteering problem with time windows, and proposed

an offline approximation algorithm. We also developed two online heuristics

Online_SPT and Online_K_Cluster for it, which construct the tour of the mo-

bile charger iteratively.

• We conducted extensive experiments by simulation to evaluate all proposed
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algorithms, including investigating the impact of constraint parameters on the

performance of the algorithms, and comparing their performance with that of

comparable algorithms. Experimental results showed that the proposed algo-

rithms are very promising, in terms of coverage quality, network throughput,

network data quality, and charging throughput.

6.2 Future Work

There are several potential research topics that can be explored based on the work in

this thesis.

• The use of multiple mobile sinks/chargers can be investigated to further im-

prove the network performance. It is challenging to arrange the motion of mul-

tiple sinks/chargers jointly. For example, with a given number of sinks, design

multiple closed paths for them to maximize the data quality, subject to the mo-

tion constraints. Or, determine the minimum number of motion-constrained

chargers and find their trajectories to ensure that none of sensors runs out of

energy.

• Several issues such as latency and mobility constraints which are coupled with

exploring sink/charger mobility can be considered, to deliver more efficient

data gathering or energy recharging solutions. For an instance, the latency of

delivering data from sinks to the data center can be considered as an essen-

tial performance metric for data collection. Or, jointly considering scheduling

and advanced mobility model will enable the developed solution to be more

practical.

• The cross-layer design should be researched in the future. Taking into account

the techniques in other layers (e.g., MAC layer) will make the solutions more

effective and efficient in improving network performance. Moreover, joint opti-

mizing approaches of multiple layers will eliminate any improper assumption

raised by designing algorithms from the aspect of a single layer, and also enable

the developed solutions more practical in real applications.



120 Conclusions and Future Work



References

1. IF. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey

on sensor networks. Communications Magazine, IEEE, 40(8):102–114, Aug 2002.

(cited on page 1)

2. Y. Alayev, Fangfei Chen, Yun Hou, M.P. Johnson, A. Bar-Noy, T. La Porta, and

K.K. Leung. Throughput maximization in mobile wsn scheduling with power

control and rate selection. In Distributed Computing in Sensor Systems (DCOSS),

2012 IEEE 8th International Conference on, pages 33–40, May 2012. (cited on page

54)

3. H.M. Ammari and S.K. Das. Centralized and clustered k-coverage protocols for

wireless sensor networks. Computers, IEEE Transactions on, 61(1):118–133, Jan

2012. (cited on pages 18 and 19)

4. Constantinos Marios Angelopoulos, Sotiris Nikoletseas, Theofanis P. Raptis,

Christoforos Raptopoulos, and Filippos Vasilakis. Efficient energy management

in wireless rechargeable sensor networks. In Proceedings of the 15th ACM In-

ternational Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, MSWiM ’12, pages 309–316, New York, NY, USA, 2012. ACM. (cited

on pages 10 and 101)

5. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the

weighted vertex cover problem. In G. Ausiello and M. Lucertini, editors, Anal-

ysis and Design of Algorithms for Combinatorial Problems, volume 109 of North-

Holland Mathematics Studies, pages 27 – 45. North-Holland, 1985. (cited on page

58)

6. Stefano Basagni, Alessio Carosi, Emanuel Melachrinoudis, Chiara Petrioli, and

Z.Maria Wang. Controlled sink mobility for prolonging wireless sensor net-

121



122 References

works lifetime. Wireless Networks, 14(6):831–858, 2008. (cited on pages 48

and 79)

7. The National Solar Radiation Data Base. http :

//rredc.nrel.gov/solar/olddata/nsrdb. (cited on pages 11, 40, and 117)

8. K. Bharath-Kumar and J.M. Jaffe. Routing to multiple destinations in computer

networks. Communications, IEEE Transactions on, 31(3):343–351, Mar 1983. (cited

on page 110)

9. L. Boloni, D. Turgut, S. Basagni, and C. Petrioli. Scheduling data transmissions

of underwater sensor nodes for maximizing value of information. In Global

Communications Conference (GLOBECOM), 2013 IEEE, pages 438–443, Dec 2013.

(cited on page 9)

10. L. Boloni, D. Turgut, S. Basagni, and C. Petrioli. Scheduling data transmissions

of underwater sensor nodes for maximizing value of information. In Global

Communications Conference (GLOBECOM), 2013 IEEE, pages 438–443, Dec 2013.

(cited on page 50)

11. A. Cammarano, C. Petrioli, and D. Spenza. Pro-energy: A novel energy predic-

tion model for solar and wind energy-harvesting wireless sensor networks. In

Mobile Adhoc and Sensor Systems (MASS), 2012 IEEE 9th International Conference

on, pages 75–83, Oct 2012. (cited on page 20)

12. M. Cardei, M.T. Thai, Yingshu Li, and Weili Wu. Energy-efficient target cover-

age in wireless sensor networks. In INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings IEEE, volume 3,

pages 1976–1984 vol. 3, March 2005. (cited on page 7)

13. M. Cardei, M.T. Thai, Yingshu Li, and Weili Wu. Energy-efficient target cover-

age in wireless sensor networks. In INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings IEEE, volume 3,

pages 1976–1984 vol. 3, March 2005. (cited on pages 15 and 18)



References 123

14. M. Cardei, Jie Wu, Mingming Lu, and M.O. Pervaiz. Maximum network lifetime

in wireless sensor networks with adjustable sensing ranges. In Wireless And

Mobile Computing, Networking And Communications, 2005. (WiMob’2005), IEEE

International Conference on, volume 3, pages 438–445 Vol. 3, Aug 2005. (cited on

page 6)

15. Mihaela Cardei and Jie Wu. Energy-efficient coverage problems in wireless ad-

hoc sensor networks. Comput. Commun., 29(4):413–420, February 2006. (cited

on page 18)

16. Arnab Chakrabarti, Ashutosh Sabharwal, and Behnaam Aazhang. Communi-

cation power optimization in a sensor network with a path-constrained mobile

observer. ACM Trans. Sen. Netw., 2(3):297–324, August 2006. (cited on pages 9,

50, and 51)

17. C. Chekuri and M. Pal. A recursive greedy algorithm for walks in directed

graphs. In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE

Symposium on, pages 245–253, Oct 2005. (cited on pages 106 and 108)

18. Ai Chen, S. Kumar, and T.H. Lai. Local barrier coverage in wireless sensor net-

works. Mobile Computing, IEEE Transactions on, 9(4):491–504, April 2010. (cited

on page 6)

19. W.C. Cheng, Cheng-Fu Chou, L. Golubchik, S. Khuller, and Yung-Chun Wan.

A coordinated data collection approach: design, evaluation, and comparison.

Selected Areas in Communications, IEEE Journal on, 22(10):2004–2018, Dec 2004.

(cited on page 8)

20. Reuven Cohen, Liran Katzir, and Danny Raz. An efficient approximation for the

generalized assignment problem. Inf. Process. Lett., 100(4):162–166, November

2006. (cited on pages 57, 58, and 60)

21. Haipeng Dai, Lintong Jiang, Xiaobing Wu, D.K.Y. Yau, Guihai Chen, and Shaojie

Tang. Near optimal charging and scheduling scheme for stochastic event cap-

ture with rechargeable sensors. In Mobile Ad-Hoc and Sensor Systems (MASS),



124 References

2013 IEEE 10th International Conference on, pages 10–18, Oct 2013. (cited on

pages 10 and 101)

22. Haipeng Dai, Xiaobing Wu, Lijie Xu, and Guihai Chen. Practical scheduling for

stochastic event capture in wireless rechargeable sensor networks. In Wireless

Communications and Networking Conference (WCNC), 2013 IEEE, pages 986–991,

April 2013. (cited on pages 7, 15, and 19)

23. Mario Di Francesco, Sajal K. Das, and Giuseppe Anastasi. Data collection in

wireless sensor networks with mobile elements: A survey. ACM Trans. Sen.

Netw., 8(1):7:1–7:31, August 2011. (cited on pages 8, 9, and 50)

24. Ling Ding, Weili Wu, J. Willson, Lidong Wu, Zaixin Lu, and Wonjun Lee.

Constant-approximation for target coverage problem in wireless sensor net-

works. In INFOCOM, 2012 Proceedings IEEE, pages 1584–1592, March 2012.

(cited on pages 7 and 15)

25. P. Dutta, J. Hui, Jaein Jeong, Sukun Kim, C. Sharp, J. Taneja, G. Tolle, K. White-

house, and D. Culler. Trio: enabling sustainable and scalable outdoor wireless

sensor network deployments. In Information Processing in Sensor Networks, 2006.

IPSN 2006. The Fifth International Conference on, pages 407–415, 2006. (cited on

page 2)

26. Kai-Wei Fan, Zizhan Zheng, and Prasun Sinha. Steady and fair rate allocation

for rechargeable sensors in perpetual sensor networks. In Proceedings of the 6th

ACM Conference on Embedded Network Sensor Systems, SenSys ’08, pages 239–252,

New York, NY, USA, 2008. ACM. (cited on pages 9, 50, and 99)

27. Lingkun Fu, Peng Cheng, Yu Gu, Jiming Chen, and Tian He. Minimizing charg-

ing delay in wireless rechargeable sensor networks. In INFOCOM, 2013 Proceed-

ings IEEE, pages 2922–2930, April 2013. (cited on pages 10 and 101)

28. Shuai Gao, Hongke Zhang, and S. Das. Efficient data collection in wireless

sensor networks with path-constrained mobile sinks. In World of Wireless, Mo-



References 125

bile and Multimedia Networks Workshops, 2009. WoWMoM 2009. IEEE International

Symposium on a, pages 1–9, June 2009. (cited on page 9)

29. Shuai Gao, Hongke Zhang, and S.K. Das. Efficient data collection in wireless

sensor networks with path-constrained mobile sinks. Mobile Computing, IEEE

Transactions on, 10(4):592–608, April 2011. (cited on pages 9, 50, and 51)

30. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

(cited on pages 85 and 87)

31. B. Gedik, Ling Liu, and P.S. Yu. Asap: An adaptive sampling approach to data

collection in sensor networks. Parallel and Distributed Systems, IEEE Transactions

on, 18(12):1766–1783, Dec 2007. (cited on page 8)

32. Philipp Maria Glatz, Leander Bernd Hörmann, Christian Steger, and Reinhold
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